An Exploratory Study to Understand Knowledge-Sharing in Data-Intensive Science

  • Jongsoon Park
  • Joseph L. Gabbard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8006)


This paper describes a challenges associated with data-intensive research processes, knowledge-sharing phenomena, and end-users’ expectations in the field of bioinformatics. We developed a questionnaire to support deeper understanding of user experiences with knowledge sharing activities. The results reveal that there are several challenging issues biologists encounter when using bioinformatics resources. A much smaller number of biologists have engaged in passive knowledge sharing within their research fields than we had expected. However, most biologists expressed their willingness to share their own knowledge with others. This result reinforces the need for more user-centered design approaches for supporting knowledge-sharing in rapidly emerging fields of data-intensive science. At the same time, our results suggest that more work is needed to examine how to best motivate users to further engage and contribute knowledge in online scientific communities.


User-centered Design Approach Knowledge-Sharing Data- Intensive Science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, J., Ishimura, Y., Kloda, L.: Why choose this one?: Factors in scientists’ selection of bioinformatics tools. Information Research 16(1), 15 (2011)Google Scholar
  2. 2.
    Bartlett, J., Neugebauer, T.: Supporting information tasks with user-centred system design: The development of an interface supporting bioinformatics analysis. Canadian Journal of Information and Library Science 29(4), 486–487 (2005)Google Scholar
  3. 3.
    Bell, G., Hey, T., Szalay, A.: Beyond the data deluge. Science 323(5919), 1297–1298 (2009)CrossRefGoogle Scholar
  4. 4.
    Bock, G.W., Zmud, R.W., Kim, Y.G., Lee, J.N.: Behavioral intention formation in knowledge sharing: Examining the roles of extrinsic motivators, social-psychological forces, and organizational climate. MIS Quarterly, 87–111 (2005)Google Scholar
  5. 5.
    Bolchini, D.: Better bioinformatics through usability analysis. Bioinformatics (Oxford, England) 25(3), 406–412 (2009), doi:10.1093/bioinformatics/btn633Google Scholar
  6. 6.
    Bolchini, D., Finkestein, A., Paolini, P.: Designing Usable Bio-information Architectures. In: Jacko, J.A. (ed.) HCII 2009, Part IV. LNCS, vol. 5613, pp. 653–662. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bull, A.T., Ward, A.C., Goodfellow, M.: Search and discovery strategies for biotechnology: the paradigm shift. Microbiology and Molecular Biology Reviews 64(3), 573–606 (2000)CrossRefGoogle Scholar
  8. 8.
    Choo, C.W.: Working with knowledge: how information professionals help organisations manage what they know. Library Management 21(8), 395–403 (2000)CrossRefGoogle Scholar
  9. 9.
    De Roure, D., Goble, C., Stevens, R.: The design and realisation of the Virtual Research Environment for social sharing of workflows. Future Generation Computer Systems 25(5), 561–567 (2009), doi:10.1016/j.future.2008.06.010CrossRefGoogle Scholar
  10. 10.
    Golbeck, J.: Weaving a web of trust. Science 321(5896), 1640–1641 (2008)CrossRefGoogle Scholar
  11. 11.
    Javahery, H.: Beyond power making bioinformatics tools user-centered. Communications of the ACM 47(11), 58 (2004), doi:10.1145/1029496.1029527CrossRefGoogle Scholar
  12. 12.
    Katoh, M.: Paradigm shift in gene-finding method: From bench-top approach to desk-top approach (review). Int. J. Mol. Med. 10(6), 677–682 (2002)Google Scholar
  13. 13.
    Kelling, S., Hochachka, W.M., Fink, D., Riedewald, M., Caruana, R., Ballard, G., Hooker, G.: Data-intensive science: a new paradigm for biodiversity studies. t BioScience 59(7), 613–620 (2009)CrossRefGoogle Scholar
  14. 14.
    Levin, D.Z., Cross, R., Abrams, L.C., Lesser, E.L.: Trust and knowledge sharing: A critical combination. IBM Institute for Knowledge-Based Organizations, 1–9 (2002)Google Scholar
  15. 15.
    Li, J.W.: SEQanswers: an open access community for collaboratively decoding genomes. Bioinformatics (Oxford, England) 28(9), 1272–1273 (2012)CrossRefGoogle Scholar
  16. 16.
    McIntosh, B.K., Renfro, D.P., Knapp, G.S., Lairikyengbam, C.R., Liles, N.M., Niu, L., Hu, J.C.: EcoliWiki: a wiki-based community resource for Escherichia coli. Nucleic Acids Research 40(D1), D1270–D1277 (2012), doi:10.1093/nar/gkr880Google Scholar
  17. 17.
    Mirel, B.: Supporting cognition in systems biology analysis: findings on users’ processes and design implications. BioMed Central Ltd. (2009)Google Scholar
  18. 18.
    Parnell, L.D.: BioStar: An Online Question & Answer Resource for the Bioinformatics Community. PLoS Computational Biology 7(10), e1002216 (2011)Google Scholar
  19. 19.
    Preece, J., Nonnecke, B., Andrews, D.: The top five reasons for lurking: improving community experiences for everyone. Computers in Human Behavior 20(2), 201–223 (2004), CrossRefGoogle Scholar
  20. 20.
    Tran, D., Dubay, C., Gorman, P., Hersh, W.: Applying task analysis to describe and facilitate bioinformatics tasks. Research Support, N I H, Extramural (2004)Google Scholar
  21. 21.
    Research Support, U S Gov’t, P H S. Stud Health Technol. Inform 107(Pt 2), 818–822 Google Scholar
  22. 22.
    Yarfitz, S.: A library-based bioinformatics services program. Bulletin of the Medical Library Association 88(1), 36 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jongsoon Park
    • 1
  • Joseph L. Gabbard
    • 1
  1. 1.Virginia Bioinformatics Institute, Industrial & Systems EngineeringVirginia TechUSA

Personalised recommendations