Icon Design for Older Users of Project Management Software

  • Christina Bröhl
  • Jennifer Bützler
  • Nicole Jochems
  • Christopher M. Schlick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8006)


Working in projects is an important part of many jobs in service industry. Due to their knowledge and experience project planning is often accomplished by older employees. Therefore, and with regard to the demographic change an integration of the needs of older employees into the work environment is required. Common to most IT-based systems, including project management software, is the use of icons. To investigate different icon sets in project management software, regarding age related differences, two studies were conducted. The first study aimed at investigating two different icon sets regarding execution times and eye movements in an applied setting. The second study consisted of a questionnaire where subjects had to map different icons to their corresponding functions and had to compare these icons regarding their intuitiveness. Results revealed that older users profit from an icon design which is low in complexity but no impact by different icon designs was found for younger users.


Usability icon design human-computer interaction project management eye-tracking age differences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shtub, A., Bard, J.F., Globerson, S.: Project Management: Processes, Methodologies, and Economics. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar
  2. 2.
    Horton, W.: Das Icon-Buch: Entwurf und Gestaltung visueller Symbole und Zeichen. Addison-Wesley, Bonn (1994)Google Scholar
  3. 3.
    Rodrigue, K.M., Kennedy, K.M.: The cognitive consequences of structural changes to the aging brain. In: Schaie, K.W., Willis, S.L. (eds.) Handbook of the Psychology of Aging, 7th edn., pp. 73–91. Elsevier, San Diego (2011)CrossRefGoogle Scholar
  4. 4.
    Anstey, K.J., Low, L.F.: Normal cognitive changes in aging. Australian Family Physician 33, 783–787 (2004)Google Scholar
  5. 5.
    Goldberg, E.B.: Sensation & Perception. Thomson Wadsworth, Canada (2007)Google Scholar
  6. 6.
    Newell, K.M., Vaillancourt, D.E., Sosnoff, J.J.: Aging, complexity, and motor performance. In: Birren, J.E., Schaie, K.W. (eds.) Handbook of the Psychology of Aging, 6th edn., pp. 163–182. Elsevier, San Diego (2006)CrossRefGoogle Scholar
  7. 7.
    Cerella, J.: Aging and information processing rate. In: Birren, J.E., Schaie, K.W. (eds.) Handbook of the Psychology of Aging, pp. 201–221. Academic Press, New York (1990)CrossRefGoogle Scholar
  8. 8.
    Smith, M.W., Sharit, J., Czaja, S.J.: Aging, motor control, and the performance of computer mouse tasks. Human Factors 41, 389–396 (1999)CrossRefGoogle Scholar
  9. 9.
    Pijukkana, K., Sahachaisaeree, N.: Graphical Design and Functional Perception on Technology-Driven Products: Case Study on Mobile Usage of the Elderly. Procedia - Social and Behavioral Sciences 42, 264–270 (2010)CrossRefGoogle Scholar
  10. 10.
    Lodding, K.: Iconic interfacing. Graph. Appl. 3, 11–20 (1983)CrossRefGoogle Scholar
  11. 11.
    Schröder, S., Ziefle, M.: Effects of icon concreteness and complexity on semantic transparency: Younger vs. Older users. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 90–97. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Mertens, A., Brandl, C., Przybysz, P., Koch-Körfges, D., Schlick, C.: Design recommendations for the creation of icons for the elderly. In: Soares, M., Jacobs, K. (eds.) Work: A Journal of Prevention, Assessment and Rehabilitation - IEA 2012: 18th World congress on Ergonomics - Designing a Sustainable Future, Amsterdam, p. 41 (2012)Google Scholar
  13. 13.
    McDougall, S.J., de Bruijn, O., Curry, M.B.: Exploring the effects of icon characteristics on user performance: the role of icon concreteness, complexity, and distinctiveness. Journal of Experimental Psychology Applied 6(4), 291–306 (2000)CrossRefGoogle Scholar
  14. 14.
    Goldberg, J., Kotval, X.P.: Computer interface evaluation using eye movements: methods and constructs. International Journal of Industrial Ergonomics 24(6), 631–645 (1999)CrossRefGoogle Scholar
  15. 15.
    Cowen, L., Ball, L.J., Delin, J.: An eye movement analysis of webpage usability. In: Faulkner, X., Finlay, J., Detienne, F. (eds.) People and Computers XVI - Memorable yet Invisible, pp. 317–335. Springer, London (2002)CrossRefGoogle Scholar
  16. 16.
    Jacob, R.J.K., Karn, K.S.: Eye tracking in human–computer interaction and usability research: Ready to deliver the promises. In: Hyona, J., Radach, R., Deubel, H. (eds.) The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research, pp. 573–605. Elsevier (2003)Google Scholar
  17. 17.
    Poole, A., Ball, L.J.: Eye tracking in HCI and usability research: Current status and future prospects. In: Gahoui, C. (ed.) Encyclopedia of Human-Computer-Interaction, pp. 211–219. Idea Group Reference, Hersey (2005)Google Scholar
  18. 18.
    Fukuda, R., Bubb, H.: Eye tracking study on web-use: Comparison between younger and elderly users in case of search task with electronic timetable service. PsychNology Journal 1(3), 202–228 (2003)Google Scholar
  19. 19.
    Hill, R., Dickinson, A., Arnott, J., Gregor, P., McIver, L.: Older web users’ eye movements: experience counts. In: Proc of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1151–1160. ACM, Vancouver (2011)Google Scholar
  20. 20.
    Kliegl, R., Grabner, E., Rolfs, M., Engbert, R.: Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology 16(1-2), 262–284 (2004)CrossRefGoogle Scholar
  21. 21.
    Rayner, K., Castelhano, M., Yang, J.: Preview benefit during eye fixations in reading for older and younger readers. Psychology and Aging 25(3), 714–718 (2010)CrossRefGoogle Scholar
  22. 22.
    Veiel, L.L., Storandt, M., Abrams, R.A.: Visual search for change in older adults. Psychology and Aging 21(4), 754–762 (2006)CrossRefGoogle Scholar
  23. 23.
    Cohen, J., Cohen, P.: Applied multiple regression/correlation for the behavioral sciences. Erlbaum, Hillsdale (1983)Google Scholar
  24. 24.
    Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., van de Weijer, J.: Eye tracking: A comprehensive guide to methods and measures. Oxford University Press, Oxford (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christina Bröhl
    • 1
  • Jennifer Bützler
    • 1
  • Nicole Jochems
    • 1
  • Christopher M. Schlick
    • 1
  1. 1.Institute of Industrial Engineering and ErgonomicsRWTH Aachen UniversityGermany

Personalised recommendations