Extending Loose Associations to Multiple Fragments

  • Sabrina De Capitani di Vimercati
  • Sara Foresti
  • Sushil Jajodia
  • Giovanni Livraga
  • Stefano Paraboschi
  • Pierangela Samarati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7964)


Data fragmentation has been proposed as a solution for protecting the confidentiality of sensitive associations when publishing data at external servers. To enrich the utility of the published fragments, a recent approach has put forward the idea of complementing them with loose associations, a sanitized form of the sensitive associations broken by fragmentation. The original proposal considers fragmentations composed of two fragments only, and supports the definition of a loose association between this pair of fragments. In this paper, we extend loose associations to multiple fragments. We first illustrate how the publication of multiple loose associations between pairs of fragments of a generic fragmentation can potentially expose sensitive associations. We then describe an approach for supporting the more general case of publishing a loose association among an arbitrary set of fragments.


Loose associations fragmentation confidentiality constraints privacy data publishing 


  1. 1.
    Aggarwal, G., et al.: Two can keep a secret: A distributed architecture for secure database services. In: Proc. of CIDR 2005, Asilomar, CA, USA (January 2005)Google Scholar
  2. 2.
    Biskup, J.: Dynamic policy adaptation for inference control of queries to a propositional information system. JCS 20(5), 509–546 (2012)Google Scholar
  3. 3.
    Chang, C., Thompson, B., Wang, H., Yao, D.: Towards publishing recommendation data with predictive anonymization. In: Proc. of ASIACCS 2010, Beijing, China (April 2010)Google Scholar
  4. 4.
    Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Combining fragmentation and encryption to protect privacy in data storage. ACM TISSEC 13(3), 22:1–22:33 (2010)Google Scholar
  5. 5.
    Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Selective data outsourcing for enforcing privacy. JCS 19(3), 531–566 (2011)Google Scholar
  6. 6.
    Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-Anonymous data mining: A survey. In: Aggarwal, C., Yu, P. (eds.) Privacy-Preserving Data Mining: Models and Algorithms. Springer (2008)Google Scholar
  7. 7.
    Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data using safe groupings. PVLDB 1(1), 833–844 (2008)Google Scholar
  8. 8.
    De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G.: Enforcing subscription-based authorization policies in cloud scenarios. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 314–329. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Fragments and loose associations: Respecting privacy in data publishing. PVLDB 3(1), 1370–1381 (2010)Google Scholar
  10. 10.
    De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Protecting privacy in data release. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 1–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource management in cloud computing. In: Proc. of CSE 2012, Paphos, Cyprus (December 2012)Google Scholar
  13. 13.
    Kifer, D., Gehrke, J.: Injecting utility into anonymized datasets. In: Proc. of SIGMOD 2006, Chicago, IL, USA (June 2006)Google Scholar
  14. 14.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and ℓ-diversity. In: Proc. of ICDE 2007, Istanbul, Turkey (April 2007)Google Scholar
  15. 15.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ℓ-Diversity: Privacy beyond k-anonymity. ACM TKDD 1(1), 3:1–3:52 (2007)Google Scholar
  16. 16.
    Raeder, T., Blanton, M., Chawla, N.V., Frikken, K.: Privacy-preserving network aggregation. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 198–207. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE TKDE 13(6), 1010–1027 (2001)Google Scholar
  18. 18.
    Tao, Y., Pei, J., Li, J., Xiao, X., Yi, K., Xing, Z.: Correlation hiding by independence masking. In: Proc. of ICDE 2010, Long Beach, CA, USA (March 2010)Google Scholar
  19. 19.
    Terrovitis, M., Mamoulis, N., Liagouris, J., Skiadopoulos, S.: Privacy preservation by disassociation. PVLDB 5(10), 944–955 (2012)Google Scholar
  20. 20.
    Wang, K., Fung, B.: Anonymizing sequential releases. In: Proc. of KDD 2006, Philadelphia, PA, USA (August 2006)Google Scholar
  21. 21.
    Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: Proc. of VLDB 2006, Seoul, Korea (September 2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Sabrina De Capitani di Vimercati
    • 1
  • Sara Foresti
    • 1
  • Sushil Jajodia
    • 2
  • Giovanni Livraga
    • 1
  • Stefano Paraboschi
    • 3
  • Pierangela Samarati
    • 1
  1. 1.Università degli Studi di MilanoCremaItaly
  2. 2.George Mason UniversityFairfaxUSA
  3. 3.Università degli Studi di BergamoDalmineItaly

Personalised recommendations