Advertisement

Asteroids pp 201-220 | Cite as

Designing Robots for Gravity-Independent Locomotion

Chapter
  • 2.9k Downloads

Abstract

In recent years, the scientific community has had an increased interest in exploring the asteroids of the solar system (APL 1996, JAXA/ISAS 2003, NASA/JPL 2007). Technological advances have enabled mankind for the first time to take a closer look at these small solar system objects through sensors and instruments of robotic deep space probes. The in-situ study of asteroids can lead to important scientific findings in the effort to map the main asteroid belt. Mapping the belt by spectral classes and knowledge about which region on Earth the meteorites have landed can provide key clues about the origin and evolution of our solar system, even including the geological history of our planet Earth (Fujiwara et al. 2006). However, little attention has been given to locomotion on their surfaces with a mobile robotic system, due to the challenging gravity conditions found in these small solar system bodies.

Keywords

Zero Moment Point Microgravity Environment Snake Robot Compliant Motion Support Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brach, R.M.: Mechanical Impact Dynamics: Rigid Body Collisions. John Wiley & Sons, New York (1991)Google Scholar
  2. Baumgartner, E.T., Wilcox, B.H., Welch, R.V., Jones, R.M.: Mobility performance of a small-body rover. In: Proceedings of the 7th International Symposium on Robotics and Applications. World Automation Congress, Anchorage, Alaska (1998)Google Scholar
  3. Behar, A., Bekey, G., Friedman, G., Desai, R.: Sub-kilogram intelligent tele-robots (SKIT) for asteroid exploration and exploitation. In: Proceedings of the SSI/Princeton Conference on Space Manufacturing, Space Studies Institute, Princeton, NJ, pp. 65–83 (May 1997)Google Scholar
  4. Bellerose, J., Girard, A., Scheeres, D.J.: Dynamics and control of surface exploration robots on asteroids. In: Proceedings of the 8th International Conference on Cooperative Control and Optimization, Gainesville, FL, pp. 135–150 (January 2008)Google Scholar
  5. Bellerose, J., Scheeres, D.J.: Dynamics and control for surface exploration of small bodies. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, Paper 6251 (2008)Google Scholar
  6. Bombardelli, C., Broschart, M., Menon, C.: Bio-inspired landing and attachment system for miniaturised surface modules. In: Proceedings of the 58th International Astronautical Congress, Hyderabad, India (2007)Google Scholar
  7. Borenstein, J.: Control and Kinematic Design of Multi-degree-of-freedom Mobile Robots with Compliant Linkage. IEEE Transactions on Robotics and Automation 11(1), 21–35 (1995)CrossRefGoogle Scholar
  8. Bretl, T., Rock, S., Latombe, J.C.: Motion planning for a three-limbed climbing robot in vertical natural terrain. In: IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 2947–2953 (2003)Google Scholar
  9. Chacin, M., Tunstel, E.: Gravity-Independent Locomotio: Dynamics and Position-based Control of Robots on Asteroid Surfaces. In: Robotics Systems – Applications, Control and Programming. InTech (2012)Google Scholar
  10. Chacin, M., Yoshida, K.: Multi-limbed rover for asteroid surface exploration using static locomotion. In: Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Munich, Germany (2005)Google Scholar
  11. Chacin, M., Yoshida, K.: Stability and Adaptability Analysis for Legged Robots Intended for Asteroid Exploration. In: Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China (2006)Google Scholar
  12. Chacin, M., Yoshida, K.: Evolving Legged Rovers for Minor Body Exploration Missions. In: Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, Pisa, Italy (2006)Google Scholar
  13. Chacin, M., Nagatani, K., Yoshida, K.: Next-Generation Rover Development for Asteroid Surface Exploration: System Description. In: Proceedings of the 25th International Symposium on Space Technology and Science and 19th International Symposium on Space Flight Dynamics, Kanazawa, Japan (2006)Google Scholar
  14. Chacin, M.: Landing Stability and Motion Control of Multi-Limbed Robots for Asteroid Exploration Missions. Ph.D. dissertation, Dept. of Aerospace Engineering, Tohoku University, Tohoku, Japan (2007)Google Scholar
  15. Chacin, M., Yoshida, K.: A Microgravity Emulation Testbed for Asteroid Exploration Robots. In: Proceedings of International Symposium on Artificial Intelligence, Robotics, Automation in Space (i-SAIRAS 2008), Los Angeles, CA (February 2008)Google Scholar
  16. Chacin, M., Yoshida, K.: Motion control of multi-limbed robots for asteroid exploration missions. In: Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan (May 2009)Google Scholar
  17. Cottingham, C.M., Deininger, W.D., Dissly, R.W., Epstein, K.W., Waller, D.M., Scheeres, D.J.: Asteroid Surface Probes: A low-cost approach for the in situ exploration of small solar system objects. In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT (2009)Google Scholar
  18. Dalilsafaei, S.: Dynamic analyze of snake robot. Proceedings of World Academy of Science, Engineering and Technology (29), 305–310 (2007)Google Scholar
  19. Der Stappen, A.V., Wentink, C., Overmars, M.: Computing form-closure configurations. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, USA, pp. 1837–1842 (1999)Google Scholar
  20. Ebbets, D., Reinert, R., Dissly, R.: Small landing probes for in-situ characterization of asteroids and comets. In: Proceedings of the 38th Lunar and Planetary Science Conference, League City, TX (2007)Google Scholar
  21. Fiorini, P., Cosma, C., Confente, M.: Localization and sensing for hopping robots. Autonomous Robots 18, 185–200 (2005)CrossRefGoogle Scholar
  22. Fujiwara, A., Kawaguchi, J., Yeomans, D.K., et al.: The Rubble Pile Asteroid Itokawa as observed by Hayabusa. Report: Hayabusa at asteroid Itokawa. Science 312, 1330–1334 (2006)CrossRefGoogle Scholar
  23. Ge, L., Sethi, S., Ci, L., Ajayan, P.M., Dhinojwala, A.: Carbon nanotube-based synthetic gecko tapes. Proceedings of National Academy of Sciences 104, 10792–10795 (2007)CrossRefGoogle Scholar
  24. Gilardi, G., Shraf, I.: Literature Survey of Contact Dynamics Modeling. Mechanism and Machine Theory 37, 1213–1239 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Hatton, R.L., Choset, H.: Generating gaits for snake robots: annealed chain fitting and keyframe wave extraction. Autonomous Robots 28, 271–281 (2010)CrossRefGoogle Scholar
  26. Hirabayashi, H., Sugimoto, K., Enomoto, A., Ishimaru, I.: Robot Manipulation Using Virtual Compliance Control. Journal of Robotics and Mechatronics 12, 567–575 (2000)Google Scholar
  27. Hokamoto, S., Ochi, M.: Dynamic behavior of a multi-legged planetary rover of isotropic shape. In: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, St-Hubert, Quebec, Canada (June 2001)Google Scholar
  28. Inoue, K., Arai, T., Mae, Y., Takahashi, Y., Yoshida, H., Koyachi, N.: Mobile Manipulation of Limbed Robots-Proposal on Mechanism and Control. Preprints of IFAC Workshop on Mobile Robot Technology, pp. 104–109 (2001) Google Scholar
  29. Inoue, K., Mae, Y., Arai, T., Koyachi, N.: Sensor-based Walking of Limb Mechanism on Rough Terrain. In: Proceedings of the 5th International Conference on Climbing and Walking Robots, CLAWAR (2002)Google Scholar
  30. JAXA/Institute of Space and Astronautical Science, Asteroid Explorer HAYABUSA (2003), http://hayabusa.jaxa.jp/
  31. Johns Hopkins University Applied Physics Laboratory, Near Earth Asteroid Rendezvous - Shoemaker Mission (1996), http://near.jhuapl.edu
  32. Jones, R., et al.: NASA/ISAS collaboration on the ISAS MUSES C asteroid sample return mission. In: Proceedings of 3rd IAA International Conference on Low-Cost Planetary Missions, Pasadena, CA (1998)Google Scholar
  33. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), pp. 1644–1650 (2003)Google Scholar
  34. Kawaguchi, J., Uesugi, K., Fujiwara, A.: The MUSES-C mission for the sample and returnits technology development status and readiness. Acta Astronautica 52, 117–123 (2003)CrossRefGoogle Scholar
  35. Keller, J.B.: Impact With Friction. ASME Journal of Applied Mechanics 53, 1–4 (1986)zbMATHCrossRefGoogle Scholar
  36. Kennedy, B., Okon, A., Aghazarian, H., Badescu, M., Bao, X., Bar-Cohen, Y., et al.: LEMUR IIb: A robotic system for steep terrain access. In: Proceedings of the 8th International Conference on Climbing and Walking Robots, London, UK, pp. 595–695 (2005)Google Scholar
  37. Klein, D.P.C., Briggs, R.: Use of compliance in the control of legged vehicles. IEEE Transactions on Systems, Man and Cybernetics 10, 393–400 (1980)CrossRefGoogle Scholar
  38. Kubota, T., Takahashi, K., Shimoda, S., Yoshimitsu, T., Nakatani, I.: Locomotion mechanism of intelligent unmanned explorer for deep space exploration. Intelligent Unmanned Systems: Theory and Applications 192, 11–26 (2009)CrossRefGoogle Scholar
  39. Martinez-Cantin, R.: Bio-inspired multi-robot behavior for exploration in low gravity environments. In: Proceedings of the 55th International Astronautical Congress, Vancouver, Canada (2004)Google Scholar
  40. Menon, C., Murphy, M., Sitti, M., Lan, N.: Space exploration Towards bio-inspired climbing robots. In: Habib, M.K. (ed.) Bioinspiration and Robotics: Walking and Climbing Robots, pp. 261–278. I-Tech Education and Publishing, Vienna (2007)Google Scholar
  41. Nakamura, Y., Shimoda, S., Shoji, S.: Mobility of a microgravity rover using internal electro-magnetic levitation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, pp. 1639–1645 (2000)Google Scholar
  42. NASA/Jet Propulsion Laboratory, Dawn Mission (September 2007), http://dawn.jpl.nasa.gov/
  43. Richter, L.: Principles for robotic mobility on minor solar system bodies. Robotics and Autonomous Systems 23, 117–124 (1998)CrossRefGoogle Scholar
  44. Schell, S., Tretten, A., Burdick, J., Fuller, S.B., Fiorini, P.: Hopper on wheels: Evolving the hopping robot concept. In: Proceedings of the International Conference on Field and Service Robotics, Helsinki, Finland, pp. 379–384 (2001)Google Scholar
  45. Scheeres, D.: Dynamical Environment About Asteroid 25143 Itokawa. University of Michigan, Department of Aerospace Engineering, USA (2004)Google Scholar
  46. Scheeres, D., Broschart, S., Ostro, S.J., Benner, L.A.: The Dynamical Environment About Asteroid 25143 Itokawa. In: Proceedings of the 24th International Symposium on Space Technology and Science, Miyazaki, Japan, pp. 456–461 (2004)Google Scholar
  47. Shimoda, S., Wingart, A., Takahashi, K., Kubota, T., Nakatani, I.: Microgravity hopping robot with controlled hopping and landing capability. In: Proceedings of the IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Las Vegas, NV, pp. 2571–2576 (October 2003)Google Scholar
  48. Silva, M.F., Machado, T.J.A.: New technologies for climbing robots adhesion to surfaces. In: Proceedings of the International Workshop on New Trends in Science and Technology, Ankara, Turkey (November 2008)Google Scholar
  49. So, E.W.Y., Yoshimitsu, T., Kubota, T.: Relative localization of a hopping rover on an asteroid surface using optical flow. In: Proceedings of the Intl. Conf. on Instrumentation, Control, and Information Technology, SICE Annual Conference, Tokyo, Japan, pp. 1727–1732 (August 2008)Google Scholar
  50. So, E.W.Y., Yoshimitsu, T., Kubota, T.: Hopping odometry: Motion estimation with selective vision. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, pp. 3808–3813 (October 2009)Google Scholar
  51. Tunstel, E.: Evolution of autonomous self-righting behaviors for articulated nanorovers. In: Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics & Automation in Space, Noordwijk, The Netherlands, pp. 341–346 (June 1999)Google Scholar
  52. Transeth, A.A., Pettersen, K.Y., Liljebck, P.: A survey on snake robot modeling and locomotion. Robotica 27, 999–1015 (2009)CrossRefGoogle Scholar
  53. Vukobratovic, M., Frank, A., Juricic, D.: On the Stability of Biped Locomotion. IEEE Transactions on Biomedical Engineering 17, 25–36 (1970)CrossRefGoogle Scholar
  54. Wagner, R., Lane, H.: Lessons learned on the AWIMR project. In: Proceedings of the IEEE International Conference Robotics and Automation, Space Robotics Workshop, Rome, Italy (2007)Google Scholar
  55. Wilcox, B.H., Jones, R.M.: The MUSES-CN nanorover mission and related technology. In: IEEE Aerospace Conference, Big Sky, MT, USA, pp. 287–295 (2000)Google Scholar
  56. Wilcox, B.H., Jones, R.M.: A ~1 kilogram asteroid exploration rover. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA (2001)Google Scholar
  57. Wilcox, B.H., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A., Cooper, B.: ATHLETE: A cargo handling and manipulation robot for the moon. Journal of Field Robotics 24, 421–434 (2007)Google Scholar
  58. Yano, H., Kubota, T., Miyamoto, H., Yoshida, K., et al.: Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Report: Hayabusa at asteroid Itokawa. Science 312, 1350–1353 (2006)CrossRefGoogle Scholar
  59. Yoshida, K.: A General Formulation for Under-Actuated Manipulators. In: Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Grenoble, France, pp. 1651–1957 (1997)Google Scholar
  60. Yoshida, K.: Touch-Down Dynamics Simulation of MUSES-C with a Contact Friction Model. In: Proceedings of 9th Workshop on Astrodynamics and Flight Mechanics, JAXA, Kanagawa, Japan (1999)Google Scholar
  61. Yoshida, K.: The jumping tortoise: A robot design for locomotion on micro gravity surface. In: Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics & Automation in Space, Noordwijk, The Netherlands, pp. 705–707 (June 1999)Google Scholar
  62. Yoshida, K., Kubota, T., Sawai, S., Fujiwara, A., Uo, M.: MUSES-C Touch-down Simulation on the Ground. In: AAS/AIAA Space Flight Mechanics Meeting, AAS/AIAA, Santa Barbara, California, pp. 481–490 (February 2001)Google Scholar
  63. Yoshida, K., Maruki, T., Yano, H.: A Novel Strategy for Asteroid Exploration with a Surface Robot. In: Proceedings of the 3rd International Conference on Field and Service Robotics, Finland, pp. 281–286 (2002)Google Scholar
  64. Yoshimitsu, T., Kubota, T., Akabane, S., et al.: Autonomous navigation and observation on asteroid surface by hopping rover MINERVA. In: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics & Automation in Space, Quebec, Canada (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Singularity UniversityMoffett fieldUSA

Personalised recommendations