Asteroids pp 151-167 | Cite as

Earth’s Temporarily-Captured Natural Satellites – The First Step towards Utilization of Asteroid Resources



Granvik et al. (2012) predict that the Earth is surrounded by a cloud of small temporarily-captured asteroids. These temporarily-captured orbiters (TCOs) originate in the near-Earth-object (NEO) population and are temporarily captured in the potential well of the Earth-Moon system (EMS). Granvik et al. (2012) predict that the largest object in orbit around Earth at any given moment (other than the Moon) has a diameter D ~1 m (Sect. 6.2). The number of TCOs is inversely proportional to their size such that there are on the order of 103 0.1-meter-diameter TCOs in orbit around Earth at any given time.


Geostationary Orbit Geostationary Earth Orbit Small Asteroid Rubble Pile Rendezvous Mission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolin, B., Jedicke, R., Granvik, M., Wainscoat, R.: Detecting Earth’s natural satellites (in preparation, 2013)Google Scholar
  2. Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., Metcalfe, T.S.: Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects. Icarus 156(2), 399–433 (2002)CrossRefGoogle Scholar
  3. Brown, P., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., Worden, S.P.: The flux of small near-Earth objects colliding with the Earth. Nature 420, 294–296 (2002)CrossRefGoogle Scholar
  4. Chyba, M., Granvik, M., Jedicke, R., Patterson, G., Picot, G., Vaubaillon, J.: Time-minimal orbital transfers to temporarily-captured natural Earth satellites. In: OCA5 – Advances in Optimization and Control with Applications. Springer Proceedings in Mathematics (accepted, 2013a)Google Scholar
  5. Chyba, M., Granvik, M., Jedicke, R., Patterson, G., Picot, G., Vaubaillon, J.: Designing Rendezvous Missions with Mini-Moons using Geometric Optimal Control. Computational Methods for Optimization and Control, Special Edition of Journal of Industrial and Management Optimization, JIMO (accepted, 2013b)Google Scholar
  6. Ferrier, C., Epenoy, R.: Optimal control for engines with electro-ionic propulsion under constraint of eclipse. Acta Astronautica 48(4), 181–192 (2001)CrossRefGoogle Scholar
  7. Gaffey, M.J., Cloutis, E.A., Kelley, M.S., Reed, K.L.: Mineralogy of Asteroids. In: Bottke, W., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 183–204. University of Arizona Press (2002)Google Scholar
  8. Geoffroy, S., Epenoy, R., Noailles, J.: Averaging techniques in optimal control for orbital low-thrust transfers and rendezvous computation. In: Proceedings of the 11th International Astrodynamics Symposium, Gifu, Japan, pp. 166–171 (1996)Google Scholar
  9. Granvik, M., Vaubaillon, J., Jedicke, R.: The population of natural Earth satellites. Icarus 218(1), 262–277 (2012)CrossRefGoogle Scholar
  10. Granvik, M., Morbidelli, A., Bottke, W., Jedicke, R., Michel, P., Nesvorny, D., Tsiganis, K., Vokrouhlicky, D.: Source populations for near-Earth objects (in preparation, 2013b)Google Scholar
  11. Granvik, M., Virtanen, J., Jedicke, R., Vaubaillon, J., Chyba, M.: Bayesian orbit-computation methods applied to temporarily-captured natural Earth satellites. In: Wnuk, E., Deleflie, F. (eds.) Proceedings of the International Symposium on Orbit Determination and Correlation (submitted, 2013a)Google Scholar
  12. Greenstreet, S., Ngo, H., Gladman, B.: The orbital distribution of Near-Earth Objects inside Earth’s orbit. Icarus 217, 355–366 (2012)CrossRefGoogle Scholar
  13. Jenniskens, P., Shaddad, M.H., Numan, D., Elsir, S., Kudoda, A.M., Zolensky, M.E., Le, L., Robinson, G.A., Friedrich, J.M., Rumble, D., Steele, A., Chesley, S.R., Fitzsimmons, A., Duddy, S., Hsieh, H.H., Ramsay, G., Brown, P.G., Edwards, W.N., Tagliaferri, E., Boslough, M.B., Spalding, R.E., Dantowitz, R., Kozubal, M., Pravec, P., Borovicka, J., Charvat, Z., Vaubaillon, J., Kuiper, J., Albers, J., Bishop, J.L., Mancinelli, R.L., Sandford, S.A., Milam, S.N., Nuevo, M., Worden, S.P.: The impact and recovery of asteroid 2008 TC3. Nature 458, 485–488 (2009)CrossRefGoogle Scholar
  14. Mainzer, A., Grav, T., Masiero, J., Bauer, J., McMillan, R.S., Giorgini, J., Spahr, T., Cutri, R.M., Tholen, D.J., Jedicke, R., Walker, R., Wright, E., Nugent, C.R.: Characterizing Subpopulations within the near-Earth Objects with NEOWISE: Preliminary Results. Astrophysical Journal 752, 110 (2012)CrossRefGoogle Scholar
  15. Ockert-Bell, M.E., Clark, B.E., Shepard, M.K., Isaacs, R.A., Cloutis, E.A., Fornasier, S., Bus, S.J.: The composition of M-type asteroids: Synthesis of spectroscopic and radar observations. Icarus 210, 674–692 (2010)CrossRefGoogle Scholar
  16. Picot, G.: Shooting and numerical continuation method for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low-propulsion. Discrete and Continuous Dynamical Systems – Series B 17(1), 245–269 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Rabinowitz, D., Helin, E., Lawrence, K., Pravdo, S.: A reduced estimate of the number of kilometre-sized near-Earth asteroids. Nature 403, 165–166 (2000)CrossRefGoogle Scholar
  18. Szebehely, V.: Theory of orbits. Academic Press (1967)Google Scholar
  19. Takada, M.: Subaru Hyper Suprime-Cam Project. In: Kawai, N., Nagataki, S. (eds.) American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 1279, pp. 120–127 (2010)Google Scholar
  20. Tonry, J.: An early warning system for asteroid impact. Publications of the Astronomical Society of the Pacific 123(899), 58–73 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of HelsinkiHelsinkiFinland
  2. 2.University of HawaiiHonoluluUSA

Personalised recommendations