Advertisement

Asteroids pp 131-150 | Cite as

What’s Out There? Asteroid Models for Target Selection and Mission Planning

Chapter

Abstract

Sending probes to asteroids for prospecting and, ultimately, mining, is fundamentally different from purely exploratory space missions. Time, cost-efficiency, and an industrially acceptable rate of success are key issues. We should be able to investigate targets that are easy to reach and are probably suitable for mining purposes; i.e., they contain enough material resources and provide favourable working environments. While such prior selection cannot be foolproof, we increase our chances of success by characterizing the potential targets as well as possible prior to space missions (e.g., Mueller et al. 2011).

Keywords

Inverse Problem Target Selection Mission Planning Adaptive Optic Binary Asteroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asphaug, E., Ryan, E., Zuber, M.: Asteroid interiors. In: Bottke, W., et al. (eds.) Asteroids III, p. 463. U Arizona Press, Tucson (2002)Google Scholar
  2. Britt, D., Yeomans, D., Housen, K., Consolmagno, G.: Asteroid density, porosity, and structure. In: Bottke, W., et al. (eds.) Asteroids III, p. 485. U. Arizona Press, Tucson (2002)Google Scholar
  3. Busch, M.: ALMA and asteroid science. Icarus 200, 347 (2009)CrossRefGoogle Scholar
  4. Carry, B., ten colleagues: Physical properties of 2 Pallas. Icarus 205, 460 (2010)Google Scholar
  5. Carry, B., twelve colleagues: Shape modelling technique KOALA validated by ESA Rosetta at (21) Lutetia. Planetary and Space Science 66, 200 (2012)Google Scholar
  6. Carry, B.: Density of asteroids. Planetary and Space Science 73, 98 (2012)CrossRefGoogle Scholar
  7. Delbo, M., Harris, A.: Physical properties of near-Earth asteroids from thermal infrared observations and thermal modeling. Meteoritics and Planetary Science 37, 1929 (2002)CrossRefGoogle Scholar
  8. Delbo, M., Ligori, S., Matter, A., Cellino, A., Berthier, J.: First VLTI-MIDI direct determinations of asteroid sizes. Astrophys. J. 694, 1228 (2009)CrossRefGoogle Scholar
  9. Delbo, M., seven colleagues: Asteroid spectroscopy with Gaia. Planetary and Space Science 73, 86 (2012)Google Scholar
  10. DeMeo, F., Binzel, R., Slivan, S., Bus, S.: An extension of the Bus taxonomy into the near-infrared. Icarus 202, 160 (2009)CrossRefGoogle Scholar
  11. Demura, H., nineteen colleagues: Pole and global shape of 25143 Itokawa. Science 312, 1347 (2006)Google Scholar
  12. Ďurech, J., Kaasalainen, M.: Photometric signatures of highly nonconvex and binary asteroids. Astron. Astrophys. 404, 709 (2003)CrossRefGoogle Scholar
  13. Ďurech, J., Grav, T., Jedicke, R., Kaasalainen, M., Denneau, L.: Asteroid models from Pan-STARRS photometry. Earth, Moon, and Planets 97, 179 (2006)CrossRefGoogle Scholar
  14. Ďurech, J., fourty-one colleagues: Physical models of ten asteroids from an observers’ collaboration network. Astron. Astrophys. 465, 331 (2007)Google Scholar
  15. Ďurech, J., ten colleagues: Detection of the YORP effect in asteroid (1620) Geographos. Astron. Astrophys. 489, L25 (2008)Google Scholar
  16. Ďurech, J., ten colleagues: Asteroid models from combined sparse and dense photometric data. Astron. Astrophys. 493, 291 (2009)Google Scholar
  17. Ďurech, J., Sidorin, V., Kaasalainen, M.: DAMIT: a database of asteroid models. Astron. Astrophys. 513, A46 (2010)Google Scholar
  18. Ďurech, J., eleven colleagues: Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes. Icarus 214, 652 (2011)Google Scholar
  19. Hanuš, J., fourteen colleagues: A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method. Astron. Astrophys. 530, A134 (2011)Google Scholar
  20. Hanuš, J., one hundred nineteen colleagues: Asteroids’ physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution. Astron. Astrophys. 551, A67 (2013)Google Scholar
  21. Harris, A., Lagerros, J.: Asteroids in the thermal infrared. In: Bottke, W., et al. (eds.) Asteroids III, U. Arizona Press, Tucson (2002)Google Scholar
  22. Hudson, R., Ostro, J., Scheeres, D.: High-resolution model of asteroid 4179 Toutatis. Icarus 161, 346 (2003)CrossRefGoogle Scholar
  23. Jedicke, R., Magnier, E., Kaiser, N., Chambers, K.: The next decade of solar system discovery with Pan-STARRS. In: Proceedings of IAU Symposium, vol. 236, p. 341 (2006)Google Scholar
  24. Jones, R.L., eight colleagues: Solar system science with LSST. Earth, Moon, and Planets 105, 101 (2009)Google Scholar
  25. Kaasalainen, M., Lamberg, L., Lumme, K., Bowell, E.: Interpretation of lightcurves of atmosphereless bodies. I. General theory. Astron. Astrophys. 259, 318 (1992)Google Scholar
  26. Kaasalainen, M., Torppa, J., Muinonen, K.: Optimization methods for asteroid lightcurve inversion. II. The complete inverse problem. Icarus 153, 37 (2001)CrossRefGoogle Scholar
  27. Kaasalainen, M.: Interpretation of lightcurves of precessing asteroids. Astron. Astrophys. 376, 302 (2001)CrossRefGoogle Scholar
  28. Kaasalainen, M., Torppa, J., Piironen, J.: Models of twenty asteroids from photometric data. Icarus 159, 369 (2002)CrossRefGoogle Scholar
  29. Kaasalainen, M.: Physical models of large number of asteroids from calibrated photometry sparse in time. Astron. Astrophys. 422, L39 (2004)Google Scholar
  30. Kaasalainen, M., Lamberg, L.: Inverse problems of generalized projection operators. Inverse Problems 22, 749 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  31. Kaasalainen, M., Ďurech, J., Warner, B., Yu, K., Gaftonyuk, N.: Acceleration of the rotation of asteroid 1862 Apollo by radiation torques. Nature 446, 420 (2007)CrossRefGoogle Scholar
  32. Kaasalainen, M.: Multimodal inverse problems; maximum compatibility estimate and shape reconstruction. Inverse Problems and Imaging 5, 37 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Kaasalainen, M., Viikinkoski, M.: Shape reconstruction of irregular bodies with multiple complementary data sources. Astron. Astrophys. 543, A97 (2012)Google Scholar
  34. Kaasalainen, S., Kaasalainen, M., Piironen, J.: Ground reference for space remote sensing: Laboratory photometry of an asteroid model. Astron. Astrophys. 440, 1177 (2005)CrossRefGoogle Scholar
  35. Keller, H.U., fourty-six colleagues: E-type asteroid Steins as imaged by OSIRIS on board Rosetta. Science 327, 190 (2010)Google Scholar
  36. Kofman, W., fourteen colleagues: The comet nucleus sounding experiment by radiowave transmission (CONSERT): A short description of the instrument and the commissioning stages. Space Science Reviews 128, 1 (2007) Google Scholar
  37. Magnusson, P., seven colleagues: Determination of pole orientations and shapes of asteroids. In: Binzel, R.P., et al. (eds.) Asteroids II, p. 67. U. Arizona Press, Tucson (1989)Google Scholar
  38. Mainzer, A., thirty-six colleagues: NEOWISE observations of near-Earth objects: Preliminary results. Astrophys. J. 743, A156 (2011)Google Scholar
  39. Marchis, F., seven colleagues: Shape, size and multiplicity of main-belt asteroids. I. Keck adaptive optics survey. Icarus 185, 39 (2006)Google Scholar
  40. Merline, W., sixteen colleagues: The resolved asteroid program - size, shape, and pole of (52) Europa. Icarus (in press, 2013)Google Scholar
  41. Masiero, J., seventeen colleagues: Main-belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. Astrophys. J. 741, 68 (2011)Google Scholar
  42. Mueller, M., sixteen colleagues: ExploreNEOs. III. Physical characterization of 65 potential spacecraft target asteroids. Astron. J. 141, 109 (2011) Google Scholar
  43. Nathues, A., Mottola, S., Kaasalainen, M., Neukum, G.: Spectral study of the Eunomia family. I. Eunomia. Icarus 175, 452 (2005)CrossRefGoogle Scholar
  44. Ostro, S.J., Hudson, R.S., Benner, L., Giorgini, J., Magri, C., Margot, J.-L., Nolan, M.: Asteroid radar astronomy. In: Bottke, W., et al. (eds.) Asteroids III, p. 151. U. Arizona Press, Tucson (2002)Google Scholar
  45. Ostro, S.J., twelve colleagues: Radar observations of Itokawa in 2004 and improved shape estimation. Meteoritics and Planetary Science 40, 1563 (2005) Google Scholar
  46. Ostro, S.J., fifteen colleagues: Radar imaging of binary near-Earth asteroid (66391) 1999KW4. Science 314, 1276 (2006)Google Scholar
  47. Pravec, P., fifty-six colleagues: Photometric survey of binary near-Earth asteroids. Icarus 181, 63 (2006)Google Scholar
  48. Pursiainen, S., Kaasalainen, M.: Iterative Alternating Sequential method for radio tomography of asteroids in 3D. Planetary and Space Science 82, 84 (2013)CrossRefGoogle Scholar
  49. Russell, H.N.: On the light-variations of asteroids and satellites. Astrophys. J. 24, 1 (1906)CrossRefGoogle Scholar
  50. Scheirich, P., Pravec, P.: Modeling of lightcurves of binary asteroids. Icarus 200, 531 (2009)CrossRefGoogle Scholar
  51. Scheirich, P., ten colleagues: The shape and rotation of asteroid 2008 TC3. Meteor. Planet. Sci. 45, 1804 (2010)Google Scholar
  52. Sierks, H., fifty-seven colleagues: Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334, 487 (2011)Google Scholar
  53. Tanga, P., Delbo, M.: Asteroid occultations today and tomorrow: toward the Gaia era. Astron. Astrophys. 474, 1015 (2007)CrossRefGoogle Scholar
  54. Tedesco, E., Noah, P., Noah, M., Price, S.: The supplemental IRAS minor planet survey. Astron. J. 123, 1056 (2002)CrossRefGoogle Scholar
  55. Usui, F., twelve colleagues: Asteroid catalog using AKARI: AKARI/IRC mid-infrared asteroid survey. Publ. Astron. Soc. Japan 63, 1117 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Tampere University of TechnologyTampereFinland
  2. 2.Charles University in PraguePragueCzech Republic

Personalised recommendations