Asteroids pp 81-129 | Cite as

Prospecting Asteroid Resources



Mining the asteroids has long been the stuff of science fiction, but is rapidly becoming an engineering reality [, http://].The idea that asteroid mining could be a profitable industry in the near future gives the prospecting phase of mining a new urgency. Finding suitable asteroids to mine could well be the bottleneck to developing asteroid resources. Though the population of near-Earth objects (NEOs) is huge, with some 20,000 NEOs larger than 100m diameter (Mainzer et al. 2011b), and vastly smaller ones, there may be only a small number of NEOs that are initially profitable. Thorough prospecting could be needed to find these precious objects. This review identifies the state of the art for each stage of NEO prospecting, with an emphasis on remote telescopic techniques, and sets out options for upgrading our capabilities to the requisite industrial scale.


Light Curf Astrophysical Journal Asteroid Surface Binary Asteroid Small Asteroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A’Hearn, M., the Deep Impact Team: The Deep Impact Mission to Comet 9P/Tempel 1. In: 35th COSPAR Scientific Assembly, p. 1667 (2004)Google Scholar
  2. Baer, J., Chesley, S.R., Matson, R.D.: Astrometric Masses of 26 Asteroids and Observations of Asteroid Porosity. Astrophysical Journal 141, 143 (2011)Google Scholar
  3. Bartczak, P., Marciniak, A.: Shaping Asteroids with Genetic Evolution (SAGE). LPICo 1667, 6126 (2012)Google Scholar
  4. Beeson, C., Galache, J.-L., Elvis, M.: (in preparation, 2013)Google Scholar
  5. Bessel, M.S.: Standard Photometric Systems. Annual Review of Astronomy and Astrophysics 43, 293–336 (2005)CrossRefGoogle Scholar
  6. Bindi, L., Eiler, J.M., Guan, Y., Hollister, L.S., Steinhardt, P.J., Yao, N.: Evidence for the extraterrestrial origin of a natural quasicrystal. Proceedings of the National Academy of Sciences 109, 1396–1401Google Scholar
  7. Binzel, R.P., et al.: The MIT-Hawaii-IRTF Joint Campaign for NEO Spectral Reconnaissance. In: 37th Annual Lunar and Planetary Science Conference, League City, Texas, March 13-17, abstract no.1491 (2006)Google Scholar
  8. Binzel, R.P., et al.: Earth encounters as the origin of fresh surfaces on near-Earth asteroids. Nature 463, 331 (2010)Google Scholar
  9. Binzel, R.P., et al.: Cracking the Space Weathering Code: Ordinary Chondrite Asteroids in the Near-Earth Population. American Astronomical Society, DPS meeting #44, #202.03 (2012)Google Scholar
  10. Bottke, W., Cellino, A., Paolichi, P., Binzel, R.P. (eds.): Asteroids III. University of Arizona Press (2002a) ISBN 0-8165-2281-2Google Scholar
  11. Bottke, W., et al.: Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects. Icarus 156, 399 (2002)CrossRefGoogle Scholar
  12. Britt, D.T., Yeomans, D., Housen, K., Consolmagno, G.: Asteroid Density, Porosity, and Structure. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 485–500. University of Arizona Press, Tucson (2002)Google Scholar
  13. Brown, P., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., Worden, S.P.: The flux of small near-Earth objects colliding with the Earth. Nature 420, 294–296 (2002)CrossRefGoogle Scholar
  14. Burbine, T., McCoy, T.J., Meibom, A., Gladman, B., Keil, K.: Meteoritic Parent Bodies: Their Number and Identification. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 653–667. U. Arizona and LPI (2002)Google Scholar
  15. Campbell, A.J., Humayan, M.: Compositions of group IVB meteorites and their parent melt. Geochimica et Cosmochimica Acta 69, 4733–4744 (2005)CrossRefGoogle Scholar
  16. Carvano, J.M., et al.: SDSS-based taxonomic classification and orbital distribution of main belt asteroids. Astronomy & Astrophysics 510, A43 (2010)Google Scholar
  17. Chesley, S.R., et al.: Direct Detection of the Yarkovsky Effect by Radar Ranging to Asteroid 6489 Golevka. Science 302, 1739–1742 (2003)CrossRefGoogle Scholar
  18. Christensen, E., Larson, S., Boattini, A., Gibbs, A., Grauer, A., Hill, R., Johnson, J., Kowalski, R., McNaught, R.: The Catalina Sky Survey: Current and Future Work. DPA 42, 1013 (2012)Google Scholar
  19. Clark, B.E., et al.: NEAR photometry of asteroid 253 Mathilde. Icarus 140, 53–65 (1998)CrossRefGoogle Scholar
  20. Cox, A.N. (ed.): Allen’s Astrophysical Quantities, 4th edn. Springer (1999)Google Scholar
  21. Daniels, K.E.: Rubble-pile Near Earth Objects: Insights from Granular Physics. In: Badescu, V. (ed.) Asteroids, vol. 138, pp. 305–323. Springer, Heidelberg (2013)Google Scholar
  22. de León, J., Mothé-Diniz, T., Licandro, J., Pinilla-Alonso, N., Campins, H.: New observations of asteroid (175706) 1996 FG3, primary target of the ESA Marco Polo-R mission. A&A 530, L12 (2011)Google Scholar
  23. Delbo, M., Ligori, S., Matter, A., Cellino, A., Berthier, J.: First VLTI-MIDI Direct Determinations of Asteroid Sizes. Astrophysical Journal 694, 1228 (2009)CrossRefGoogle Scholar
  24. DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J.: An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009)CrossRefGoogle Scholar
  25. Dunn, T.L., McCoy, T.J., Sunshine, J.M., McSween Jr, H.Y.: A Co-ordinated Mineralogical, Spectral and Compositional Study of Ordinary Chondrites: Implications for Asteroid Spectroscopic Classification. LPI 41, 1750 (2010)Google Scholar
  26. Ellis, S.C., Bland-Hawthorn, J.: The Case for OH suppression at near-infrared wavelengths. Monthly Notices of the Royal Astronomical Society 386, 47–64 (2008)CrossRefGoogle Scholar
  27. Elvis, M., et al.: A Vigorous Explorer Program. White paper submitted to the Astro2010 NAS/NRC Decadal Review of Astronomy and Astrophysics, 2009arXiv0911.3383E (2009)Google Scholar
  28. Elvis, M., McDowell, J.C., Hoffman, J., Binzel, R.P.: Ultra-low delta-v objects and the human exploration of asteroids. Planetary and Space Sciences 59, 1408 (2011)CrossRefGoogle Scholar
  29. Elvis, M.: Let’s Mine asteroids for science and profit. Nature 485, 549 (2012)CrossRefGoogle Scholar
  30. Elvis, M., Landau, D., et al.: A Swarm of Micro-satellites for in Situ NEO Characterization. American Astronomical Society, DPS meeting #44, #215.04 (2012)Google Scholar
  31. Elvis, M.: How Many Ore-Bearing Near-Earth Asteroids? Planetary and Space Sciences (submitted, 2013)Google Scholar
  32. Freedman, W.L., et al.: Final Results from the Hubble Space Tele-scope Key Project to Measure the Hubble Constant. Astrophysical Journal 553, 47–72 (2001)CrossRefGoogle Scholar
  33. Fukugita, M., Ichikawa, T., Gunn, J.E., Doi, M., Shimasaku, K., Schneider, D.P.: The Sloan Digital Sky Survey Photometric System. Astronomical Journal 111, 1748 (1996)CrossRefGoogle Scholar
  34. Gaffey, M.J., Bell, J.F., Brown, R.H., Burbine, T.H., Piatek, J.L., Reed, K., Chaky, D.A.: Mineralogical variations within the S-type asteroid class. Icarus 106, 573–602 (1993)CrossRefGoogle Scholar
  35. Gaskell, R.W.: SPC Shape and Topography of Vesta from DAWN Imaging Data. DPS 442, 0903 (2012)Google Scholar
  36. Grady, M.M.: Catalogue of Meteorites, 689 p. Cambridge Univ. Press (2000)Google Scholar
  37. Greenstreet, S., Gladman, B.: High-inclination Atens ARE Rare, DPS 4430505G (2012)Google Scholar
  38. Grotzinger, J.P., et al.: Mars Science Laboratory Mission and Science Investigation. Space Science Reviews 170, 5–56 (2012)CrossRefGoogle Scholar
  39. Hapke, B.: Coherent backscatter and the radar characteristics of outer planet satellites. Icarus 88, 407–417 (1990)CrossRefGoogle Scholar
  40. Hapke, B.: Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research 106(E5), 10039–10074 (2001)CrossRefGoogle Scholar
  41. Hanuš, J., Ďurke, J.: New Asteroid models based on combined dense and sparse photometry. Astronomy & Astrophysics (2011) (submitted)Google Scholar
  42. Harris, A.W.: A Thermal Model for Near-Earth Asteroids. Icarus 131, 291 (1998)CrossRefGoogle Scholar
  43. Harris, A.: What Spaceguard did. Nature 453, 1178–1179 (2008)CrossRefGoogle Scholar
  44. Harris, A.W., Harris, A.W.: On the Revision of Radiometric Albedos and Diameters of Asteroids. Icarus 126, 450 (1997)CrossRefGoogle Scholar
  45. Harris, A.W., Lagerros, J.S.V.: (XXX) Asteroids in the Thermal Infrared. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 653–667. U. Arizona and LPIGoogle Scholar
  46. Hillenbrand, L.A., Foster, J.B., Persson, S.E., Matthews, K.: The Y Band at 1.035 Microns: Photometric Calibration and the Dwarf Stel-lar/Substellar Color Sequence. Publications of the Astronomical Society of the Pacific 114, 708–720 (2002)CrossRefGoogle Scholar
  47. Howe, T., O’Brien, R.C., Stoots, C.M.: Development of a Small-Scale Radioisotope Thermo-Photovoltaic Power Source. Nuclear and Emerging Technologies for Space 3029 (2012)Google Scholar
  48. Howell, E.S., Rikin, A.S., Vilas, F., Magri, C., Nolan, M.C., Vervack Jr., R.J., Fernandez, Y.R.: Hydrated silicates on main-belt asteroids: Correlation of the 0.7- and 3-micron absorption bands. EPSC Abstracts 6, 637 (2011)Google Scholar
  49. Howell, E.S., et al.: Combining Thermal and Radar Observations of Near-Earth Asteroids. DPS 441, 1107 (2012)Google Scholar
  50. Ivezić, Ž., et al.: Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data. Astronomical Journal 122, 2749 (2001)CrossRefGoogle Scholar
  51. Ivezić, Ž., et al.: LSST: from Science Drivers to Reference Design and Anticipated Data Products. arXiv:0805.2366 (2011)Google Scholar
  52. Jedicke, R., et al.: ATLAS: Asteroid Terrestrial-impact Last Alert System. American Astronomical Society. DPS meeting #44, #210.12 (2012)Google Scholar
  53. Jenniskens, P.: Quantitative meteor spectroscopy: Elemental abundances. Advances in Space Research 39, 491–512 (2007)CrossRefGoogle Scholar
  54. Jenniskens, P., et al.: The impact and recovery of asteroid 2008 TC3. Nature 458, 485 (2009)CrossRefGoogle Scholar
  55. Jenniskens, P., et al.: Radar-Enabled Recovery of the Sutter’s Mill Meteorite a Carbonaceous Chondrite Regolith Breccia. Science 338, 1583 (2012)CrossRefGoogle Scholar
  56. Jewitt, D.: The Active Asteroids. Astronomical Journal 143, 66 (2012)CrossRefGoogle Scholar
  57. Jones, D.L.: Lower-Cost Architectures for Large Arrays of Small Antennas. IEEEAC paper # 1199 (2005), doi:10.1109/AERO.2006.1655810Google Scholar
  58. Kaiser, N., et al.: Pan-STARRS: A Large Synoptic Survey Telescope Array. In: Survey and Other Telescope Technologies and Discoveries. Proceedings of the SPIE, vol. 4836, pp. 154–164 (2002)Google Scholar
  59. Kargel, J.S.: Metalliferous asteroids as potential sources of precious metals. Journal of Geophysical Research 99(E10), 21129–21141 (1994)CrossRefGoogle Scholar
  60. Kraft, R., Kenter, A., Murray, S., Elvis, M., Branduardi-Raymont, G., Garcia, M., Forman, W., Geary, J., McCoy, T., Smith, R.: X-ray Imaging Spectroscopy for Planetary Science. American Astronomical Society Division of Planetary Sciences meeting #44, #215.10 (2012)Google Scholar
  61. Kistler, J., et al.: Bulk Densities of Binary Asteroids from the Warm Spitzer NEO Survey. DPS 42, 5709 (2010)Google Scholar
  62. Koch, D.G., et al.: Kepler Mission Design, Realized Photometric Performance, and Early Science. Astrophysical Journal Letters 713, L79–L86 (2010)Google Scholar
  63. Larson, S.M., Hergenrother, C., Whitely, R., Kelly, C., Hill, R.: Upgrading the Catalina Sky Survey and Southern Survey. In: International Workshop on Collaboration and Coordination Among NEO Observers and Orbital Computers, p. 35. Japan Safeguard Association (2001)Google Scholar
  64. Larson, S.: Current NEO Surveys. In: Milani, A., Valsecchi, G.B., Vokrouhlický, D. (eds.) Near Earth Objects, our Celestial Neighbors: Opportunity and Risk Proceeding of IAU Symposium No. 236, pp. 323–328 (2007)Google Scholar
  65. Lauretta, D.S., the OSIRIS-REx Team: An Overview of the OSIRIS-REx Asteroid Sample Return Mission. In: 43rd Lunar and Planetary Science Conference, The Woodlands, Texas, March 19-23. LPI Contribution No. 1659, id.2491 (2012)Google Scholar
  66. Longo, G.: The Tunguska Event. In: Bobrowsky, P.T., Rickman, H. (eds.) Comet/Asteroid Impacts and Human Society, An Interdisciplinary Approach, ch. 18. Springer, Berlin (2007)Google Scholar
  67. Ma, C., Tschauner, O., Beckett, J.R., Rossman, G.R., Liu, W.: Panguite (Ti4 + ,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffusion and EBSD. American Mineralogist 97, 1219–1225 (2012)CrossRefGoogle Scholar
  68. Madrid, J.P., Macchetto, D.: High-Impact Astronomical Observatories. Bulletin of the American Astronomical Society 41, 913 (2009)Google Scholar
  69. Mahaffy, P.R., et al.: Sample Analysis at Mars (SAM) Instrument Suite for the 2011 Mars Science Laboratory. In: 40th Lunar and Planetary Science Conference, id.1088 (2009)Google Scholar
  70. Mainzer, A.K.: NEOCam: The Near-Earth Object Camera. DPS meeting #38, Bulletin of the American Astronomical Society 38, 568 (2006)Google Scholar
  71. Mainzer, A.K., et al.: Thermal Model Calibration for Minor Planets Observed with Wide-field Infrared Survey Explorer/NEOWISE. Astrophysical Journal 736, 100 (2011a)Google Scholar
  72. Mainzer, A.K., et al.: NEOWISE Observations of Near-Earth Objects: Preliminary Results. Astrophysical Journal 743, 156 (2011b)Google Scholar
  73. Mainzer, A., et al.: Physical Parameters of Asteroids Estimated from the WISE 3-Band Data and NEOWISE Post-Cryogenic Survey. Astrophysical Journal 760, L12 (2012)Google Scholar
  74. Matter, A., Delbo, M., Ligori, S., Crouzet, N., Tangaa, P.: Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared. Icarus 215, 47 (2011)CrossRefGoogle Scholar
  75. Maurice, S., et al.: ChemCam Instrument for the Mars Science Laboratory (MSL) Rover. In: 36th Annual Lunar and Planetary Science Conference, abstract no. 1735 (2005)Google Scholar
  76. McCoy, T.J., et al.: Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history. Geochimica et Cosmochimica Acta 75, 6821–6843 (2011)CrossRefGoogle Scholar
  77. McMurty, C., Lee, D., Chen, C.-Y.A., Demers, R.T., Dorn, M., Forrest, W.J., Liu, F., Mainzer, A., Pipher, J.L., Yulius, A.: Development of Passively Cooled Long-wave Infrared Detector Arrays for NEOCam. Optical Engineering, special topic: Space Telescopes II (submitted, 2013)Google Scholar
  78. Morgan, J.W., Waler, R.J., Grossman, J.N.: Rhenium-osmium isotope systematics in meteorites, I: Magmatic iron meteorite groups IIAB and IIIAB. Earth and Planetary Science Letters 108, 191–202 (1992)CrossRefGoogle Scholar
  79. Mouret, S., Mignard, F.: Detecting the Yarkovsky effect with the Gaia missin: list of the most promising candidates. Monthly Notices of the Royal Astronomical Society 413, 741–748 (2011)CrossRefGoogle Scholar
  80. Moskovitz, N.: Colors of Dynamically Associated Asteroid Pairs, arXiv:1207.3799 (2012)Google Scholar
  81. Moskovitz, N., Abe, S., Osip, D., Bus, S.J., Abell, P., DeMeo, F., Binzel, R.P.: Characterization of Hayabusa II Target Asteroid (162173) 1999 JU3, DPS 4410204 (2012)Google Scholar
  82. Mueller, J.: Thruster Options for Microspacecraft: A Review and Evaluation of Existing Hardware and Emerging Technologies. In: 33rd Joint Propulsion Conference, Seattle, WA, Paper AIAA 97-3058 (July 1997)Google Scholar
  83. Mueller, T.G., et al.: Thermo-physical properties of 162173 (1999 JU3), a potential flyby and rendezvous target for interplanetary missions. Astronomy & Astrophysics 524, A.145 (2011)Google Scholar
  84. Nelson, M.L., Britt, D.T., Lebofsky, L.A.: Review of Asteroid Compositions. In: Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near Earth Space, Tucson. University of Arizona Press (1993)Google Scholar
  85. Nugent, C.R., et al.: Detection of Semimajor Axis Drifts in 54 Near-Earth Asteroids: New Measurements of the Yarkovsky Effect. Astronomical Journal 144, 60–73 (2012)CrossRefGoogle Scholar
  86. Ostro, S.J., Campbell, D.B., Chandler, J.F., Hine, A.A., Hudson, R.S., Rosema, K.D., Shapiro, I.I.: Asteroid 1986 DA: Radar evidence for a metallic composition. Science 252, 1399–1404 (1991)Google Scholar
  87. Petaev, M.I., Jacobsen, S.B.: Differentiation of metal-rich meteoritic parent bodies: I. Measurements of PGEs, Re, Mo, W, and Au in meteoritic Fe-Ni metal. Meteoritics and Planetary Science 39, 1685–1697 (2004)Google Scholar
  88. Petit, J.-M., Chambers, J., Franklin, F., Nagasawa, M.: Primordial Excitation and Depletion of the Main Belt. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 711–723. U. Arizona and LPI (2002)Google Scholar
  89. Pieters, C.M., et al.: Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics & Planetary Science 35, 1101–1107 (2000)CrossRefGoogle Scholar
  90. Pogson, N.: Magnitudes of Thirty-six of the Minor Planets for the first day of each month of the year 1857. Monthly Notices of the Royal Astronomical Society 17, 12 (1857)Google Scholar
  91. Pravec, P., Harris, A.W.: Fast and Slow Rotation of Asteroids. Icarus 148, 12 (2000)CrossRefGoogle Scholar
  92. Robinson, S.J., Schmidt, J.T.: Fluorescent Penetrant Sensitivity and Removability - What the Eye Can See, a Fluorometer Can Measure. Materials Evaluation 42, 1029–1034 (1984)Google Scholar
  93. Rubincam, D.P.: Radiative Spin-up and Spin-down of Small Asteroids. Icarus 148, 2 (2000)CrossRefGoogle Scholar
  94. Schroeder, D.J.: Astronomical Optics, 2nd edn, ch. 7. Academic Press (1999)Google Scholar
  95. Scott, E.R.D., Wasson, J.T., Buchwald, V.F.: The chemical classification of iron meteorites – VII. A reinvestigation of irons with Ge concentrations between 25 and 80 ppm. Geochimica et Cosmochimica 37, 1957–1983 (1973)CrossRefGoogle Scholar
  96. Shepard, M.K., et al.: A radar survey of M- and X-class asteroids II Summary and synthesis. Icarus 208, 221 (2010)Google Scholar
  97. Shoemaker, E.M., Helin, E.F.: NASA CP-2053, pp. 245–256 (1978)Google Scholar
  98. Simcoe, R.A., et al.: The FIRE infrared spectrometer at Magellan: construction and commissioning. In: SPIE, vol. 7735, p. 38 (2010)Google Scholar
  99. Sonter, M.J.: The Technical and Economic Feasibility of Mining the Near-Earth Asteroids. Acta Astronautica 41, 637–647 (1997)CrossRefGoogle Scholar
  100. Steel, D.: Two Tunguskas in South America in the 1930’s? Journal of the International Meteor Organization 23, 207–209 (1995)Google Scholar
  101. Stepp, L., Daggert, L., Gilletta, P.: Estimating the costs of ex-tremely large telescopes. In: Proc. SPIE. 0277-786X 4840, pp. 309–321 (2002)Google Scholar
  102. Suggs, R.M., Cooke, W.J., Suggs, R.J., Swift, W.R., Hollon, N.: The NASA Lunar Impact Monitoring Program. Earth Moon Planets 102, 293–298 (2008)CrossRefGoogle Scholar
  103. Sullivan, P.W., Simcoe, R.A.: A Calibrated Measurement of the Near-IR Continuum Sky Brightness Using Magellan/FIRE, ar-Xiv:1207.0817 (2012)Google Scholar
  104. Takashima, Y., Scheeres, D.: Surface Gravity Fields for Asteroids and Comets. In: 22nd AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, No. 12-224 (2012); Journal of Guidance, Control and Dynamics (in press)Google Scholar
  105. Tholen, D.J.: Asteroid taxonomic classifications. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroids II, pp. 1129–1150. U. Arizona Press, Tucson (1989)Google Scholar
  106. Thomas, C.A., Binzel, R.P.: Identifying meteorite source regions through near-Earth object spectroscopy. Icarus 205, 419–429 (2010)CrossRefGoogle Scholar
  107. Thomas, C.A., et al.: ExploreNEOs. V. Average Albedo by Taxonomic Complex in the Near-Earth Asteroid Population. Astronomical Journal 142, 85 (2011a)CrossRefGoogle Scholar
  108. Thomas, C.A., et al.: Space weathering of small Koronis family members. Icarus 212, 158 (2011b)CrossRefGoogle Scholar
  109. Tonry, J.L.: An Early Warning System for Asteroid Impact. Publications of the Astronomical Society of the Pacific 123, 58–72 (2011)CrossRefGoogle Scholar
  110. Tonry, J.: Asteroid Terrestrial-impact Last Alert System (ATLAS). White paper submitted to the NRC: Review of Near-Earth Object Surveys and Hazard Mitigation Strategies (2009)Google Scholar
  111. Trombka, J.I., et al.: Compositional mapping with the NEAR X ray/gamma ray spectrometer. Journal of Geophysical Research 102(E10), 23729–23750 (1997)CrossRefGoogle Scholar
  112. Vereš, P., Jedicke, R., Wainscoat, R., Granvik, M., Chesley, S., Abe, S., Denneau, L., Grav, T.: Detection of Earth-impacting asteroids with the next generation all sky surveys. Icarus 203, 472 (2009)CrossRefGoogle Scholar
  113. Vernazza, P., Binzel, R.P., Rossi, A., Fulchignoni, M., Birlan, M.: Solar Wind as the origin of rapid reddening of asteroid surfaces. Nature 458, 993 (2009)CrossRefGoogle Scholar
  114. Vernazza, P., Carry, B., Emery, J., Hora, J.L., Cruikshank, D., Binzel, R.P., Jackson, J., Helbert, J., Maturilli, A.: Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions. Icarus 207, 800–809 (2010)CrossRefGoogle Scholar
  115. Vilas, F.: A quick look method of detecting water of hydration in small Solar System bodies. LPSC 25, s. 1439 (1994)Google Scholar
  116. Walker, G.: The MOST Asteroseismology Mission: Ultraprecise Photometry from Space. Publications of the Astronomical Society of the Pacific 115, 1023–1035Google Scholar
  117. Weidenschilling, S.J.: Formation of planetismals and accretion of the terrestrial planets. Space Science Reviews 92, 295–310 (2000)CrossRefGoogle Scholar
  118. Willman, M., et al.: Using the youngest asteroid clusters to constrain the space weathering and gardening rate on S-complex asteroids. Icarus 208, 758 (2010)CrossRefGoogle Scholar
  119. Wright, E.L., et al.: The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astronomical Journal 140, 1868 (2010)CrossRefGoogle Scholar
  120. Yang, J., Goldstein, J.I., Michael, J.R., Kotula, P.G., Scott, E.R.D.: Thermal History and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta 74, 4493–4506 (2010)CrossRefGoogle Scholar
  121. Yarkovsky, I.O.: The density of luminiferous ether and the resistance it offers to motions. Bryansk (1901)Google Scholar
  122. Yeomans, D.H.: Near Earth Objects: Finding Them Before They Find Us. Princeton University Press, Princeton (2013)Google Scholar
  123. Zellner, B., Tholen, D.J., Tedesco, E.F.: The eight-color asteroid survey: Results for 589 minor planets. Icarus 61, 355–416 (1985)CrossRefGoogle Scholar
  124. Zombeck, M.V.: Handbook of Space Astronomy and Astrophysics, 3rd edn., p. 139. Cambridge University Press (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations