Asteroids pp 45-79 | Cite as

Orbital and Dynamical Characteristics of Small Bodies in the Region of Inner Planets



In addition to the planets, there are numerous smaller objects orbiting around the Sun as well. These objects exhibit a wide range of sizes, from dust grains to dwarf planets. The minor objects, larger than about 1 meter in diameter, orbiting the Sun interior to Saturn’s orbit are called asteroids. Asteroids occupy a wide variety of orbits, but most of them are located in the so-called main asteroid belt, between the orbits of Mars and Jupiter. Apart from this, there are also other large groups of asteroids such as near-Earth asteroids, Hilda group and Jupiter’s Trojans. Moreover, several thousands of planet-crossing asteroids, with perihelia inside the orbits of the inner planets, are known as well.


Orbital Element Asteroid Belt Main Belt Perihelion Distance Royal Astronomical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaugè, C., Roig, F.: A Semianalytical Model for the Motion of the Trojan Asteroids: Proper Elements and Families. Icarus 153, 391–415 (2001)CrossRefGoogle Scholar
  2. Bien, R., Schubart, J.: Trojan orbits in secular resonances. Celestial Mechanics 34, 425–434 (1984)CrossRefGoogle Scholar
  3. Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S.: Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects. Icarus 156, 399–433 (2002)CrossRefGoogle Scholar
  4. Bottke, W.F., Vokrouhlickỳ, D., Rubincam, D.P., Nesvornỳ, D.: The Yarkovsky and Yorp Effects: Implications for Asteroid Dynamics. Annual Review of Earth and Planetary Sciences 34, 157–191 (2006)CrossRefGoogle Scholar
  5. Brasser, R., Innanen, K.A., Connors, M., Veillet, C., Wiegert, P., Mikkola, S., Chodas, P.W.: Transient coorbital asteroids. Icarus 171, 102–109 (2004)CrossRefGoogle Scholar
  6. Brasser, R., Wiegert, P.: Asteroids on Earth-like orbits and their origin. Monthly Notices of the Royal Astronomical Society 386, 2031–2038 (2008)CrossRefGoogle Scholar
  7. Brož, M.: Yarkovsky Effect and the Dynamics of the Solar System. Ph.D. thesis, Charles University, Prague (2006)Google Scholar
  8. Brož, M., Rozehnal, J.: Eurybates - the only asteroid family among Trojans. Monthly Notices of the Royal Astronomical Society 414, 565–574 (2011)CrossRefGoogle Scholar
  9. Brown, M.E., Barkume, K.M., Ragozzine, D., Schaller, E.L.: A collisional family of icy objects in the Kuiper belt. Nature 446, 294–296 (2007)CrossRefGoogle Scholar
  10. Campins, H., Davis, D.R., Weidenschilling, S.J., Magee, M.: Searching for vulcanoids. In: Rettig, T.W., Hahn, J.M. (eds.) Completing the Inventory of the Solar System. ASP Conf. Series, pp. 85–96 (1996)Google Scholar
  11. Chesley, S.R., Ostro, S.J., Vokrouhlický, D., Capek, D., Giorgini, J.D., Nolan, M.C., Margot, J.L., Hine, A.A., Benner, L.A.M., Chamberlin, A.B.: Direct Detection of the Yarkovsky Effect by Radar Ranging to Asteroid 6489 Golevka. Science 302, 1739–1742 (2003)CrossRefGoogle Scholar
  12. Christou, A.A., Asher, D.J.: A long-lived horseshoe companion to the Earth. Monthly Notices of the Royal Astronomical Society 414, 2965–2969 (2011)CrossRefGoogle Scholar
  13. Connors, M., Wiegert, P., Veillet, C.: Earth’s Trojan asteroid. Nature 475, 481–483 (2011)CrossRefGoogle Scholar
  14. Ćuk, M., Hamilton, D.P., Holman, M.J.: Long-Term Stability of Horseshoe Orbits. Monthly Notices of the Royal Astronomical Society 426, 3051–3056 (2012)CrossRefGoogle Scholar
  15. de Leòn, J., Campins, H., Tsiganis, K., Morbidelli, A., Licandro, J.: Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower. Astronomy and Astrophysics 513, A26 (2010)Google Scholar
  16. Dermott, S.F., Murray, C.D.: The dynamics of tadpole and horseshoe orbits. I - Theory. II - The coorbital satellites of Saturn. Icarus 48, 1–22 (1981)CrossRefGoogle Scholar
  17. Durda, D.D., Stern, S.A., Colwell, W.B., Parker, J.W., Levison, H.F., Hassler, D.M.: A New Observational Search for Vulcanoids in SOHO/LASCO Coronagraph Images. Icarus 148, 312–315 (2000)CrossRefGoogle Scholar
  18. Dvorak, R., Schwarz, R.: On the Stability Regions of the Trojan Asteroids. Celestial and Dynamical Astronomy 92, 19–28 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Dvorak, R., Schwarz, R., Sűli, Á., Kotoulas, T.: On the stability of the Neptune Trojans. Monthly Notices of the Royal Astronomical Society 382, 1324–1330 (2007)CrossRefGoogle Scholar
  20. Elvis, M., McDowell, J., Hoffman, J.A., Binzel, R.P.: Ultralow deltav objects and the human exploration of asteroids. Planetary and Space Science 59, 1408–1412 (2011)CrossRefGoogle Scholar
  21. Efthymiopoulos, C.: Formal Integrals and Nekhoroshev Stability in a Mapping Model for the Trojan Asteroids. Celestial Mechanics and Dynamical Astronomy 92, 29–52 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Érdi, B., Forgács-Dajka, E., Nagy, I., Rajnai, R.: A parametric study of stability and resonances around L4 in the elliptic restricted three body problem. Celestial Mechanics and Dynamical Astronomy 104, 145–158 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. Evans, N.W., Tabachnik, S.: Possible long-lived asteroid belts in the inner Solar System. Nature 399, 41–43 (1999)CrossRefGoogle Scholar
  24. Evans, N.W., Tabachnik, S.: Asteroids in the inner Solar system - II. Observable properties. Monthly Notices of the Royal Astronomical Society 319, 80–94 (2000)CrossRefGoogle Scholar
  25. Freistetter, F.: Fuzzy characterization of near-earth-asteroids. Celestial Mechanics and Dynamical Astronomy 104, 93–102 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Gladman, B., Migliorini, F., Morbidelli, A., Zappalà, V., Michel, P., Cellino, A., Froeschlé, C., Levison, H., Bailey, M., Duncan, M.: Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997)CrossRefGoogle Scholar
  27. Gradie, J.C., Chapman, C.R., Williams, J.G.: Families of minor planets. In: Gehrels, T. (ed.) Asteroids, pp. 359–390. University of Arizona Press (1979)Google Scholar
  28. Granvik, M., Vaubaillon, J., Jedicke, R.: The population of natural Earth satellites. Icarus 218, 262–277 (2012)CrossRefGoogle Scholar
  29. Greenstreet, S., Ngo, H., Gladman, B.: The orbital distribution of Near-Earth Objects inside Earth’s orbit. Icarus 217, 355–366 (2012a)CrossRefGoogle Scholar
  30. Greenstreet, S., Gladman, B., Ngo, H., Granvik, M., Larson, S.: Production of Near-Earth Asteroids on Retrograde Orbits. The Astrophysical Journal 749, L39 (2012b)Google Scholar
  31. Gronchi, G.F., Milani, A.: Averaging on Earth-Crossing Orbits. Celestial Mechanics and Dynamical Astronomy 71, 109–136 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  32. Gronchi, G.F., Milani, A.: Proper Elements for Earth-Crossing Asteroids. Icarus 152, 58–69 (2001)CrossRefGoogle Scholar
  33. Harris, A.: What Spaceguard did? Nature 453, 1178–1179 (2008)CrossRefGoogle Scholar
  34. Helin, E.F., Shoemaker, E.M.: Discovery of Asteroid 1976 AA. Icarus 31, 415–419 (1977)CrossRefGoogle Scholar
  35. Hsieh, H.H., Jewitt, D.: A Population of Comets in the Main Asteroid Belt. Science 312, 561–563 (2006)CrossRefGoogle Scholar
  36. Hsieh, H.H., 41 colleagues: Discovery of Main-belt Comet P/2006 VW139 by Pan-STARRS1. The Astrophysical Journal 748, L15 (2012)Google Scholar
  37. Jewitt, D., Li, J.: Activity in Geminid Parent (3200) Phaethon. The Astronomical Journal 140, 1519–1527 (2010)Google Scholar
  38. Knežević, Z., Milani, A., Farinella, P., Froeschle, C., Froeschle, C.: Secular resonances from 2 to 50 AU. Icarus 93, 316–330 (1991)CrossRefGoogle Scholar
  39. Knežević, Z., Milani, A.: Synthetic Proper Elements for Outer Main Belt Asteroids. Celestial Mechanics and Dynamical Astronomy 78, 17–46 (2000)zbMATHCrossRefGoogle Scholar
  40. Knežević, Z., Lemaitre, A., Milani, A.: Asteroid proper elements determination. In: Bottke, W.F., Cellino, A., Paolicchi, P., Binzel, R. (eds.) Asteroids III, pp. 603–612. University of Arizona Press, Tucson (2002)Google Scholar
  41. Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal 67, 591–591 (1962)MathSciNetCrossRefGoogle Scholar
  42. Leake, M.A., Chapman, C.R., Weidenschilling, S.J., Davis, D.R., Greenberg, R.: The chronology of Mercury’s geological and geophysical evolution - The Vulcanoid hypothesis. Icarus 71, 350–375 (1987)CrossRefGoogle Scholar
  43. Lemaitre, A., Morbidelli, A.: Proper elements for highly inclined asteroidal orbits. Celestial Mechanics and Dynamical Astronomy 60, 29–56 (1994)zbMATHCrossRefGoogle Scholar
  44. Levison, H.F., Duncan, M.J.: From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127, 13–32 (1997)CrossRefGoogle Scholar
  45. Lhotka, C., Efthymiopoulos, C., Dvorak, R.: Nekhoroshev stability at L4 or L5 in the elliptic-restricted three-body problem - application to Trojan asteroids. Monthly Notices of the Royal Astronomical Society 384, 1165–1177 (2008)CrossRefGoogle Scholar
  46. Mainzer, A., 36 colleagues: NEOWISE Observations of Near-Earth Objects: Preliminary Results. The Astrophysical Journal 743, 156 (2011)Google Scholar
  47. Mainzer, A., 12 colleagues: Characterizing Subpopulations within the near-Earth Objects with NEOWISE: Preliminary Results. The Astrophysical Journal 752, 110 (2012)Google Scholar
  48. Malhotra, R.: Orbital Resonances and Chaos in the Solar System. In: Lazzaro, D., Vieira Martins, R., Ferraz-Mello, S., Fernandez, J., Beauge, C. (eds.) Solar System Formation and Evolution. ASP Conf. Series, vol. 149, pp. 37–63 (1998)Google Scholar
  49. Michel, P.: Effects of linear secular resonances in the region of semimajor axes smaller than 2 AU. Icarus 129, 348–366 (1997)CrossRefGoogle Scholar
  50. Michel, P., Thomas, F.: The Kozai resonance for near-Earth asteroids with semimajor axes smaller than 2 AU. Astronomy and Astrophysics 307, 310–318 (1996)Google Scholar
  51. Michel, P., Froeschlé, C.: The location of linear secular resonances for semimajor axes smaller than 2 AU. Icarus 128, 230–240 (1997)CrossRefGoogle Scholar
  52. Michel, P., Froeschlé, C., Farinella, P.: Dynamical evolution of NEAs: Close encounters, secular perturbations and resonances. Earth Moon Planets 72, 151–164 (1996)CrossRefGoogle Scholar
  53. Michel, P., Zappalà, V., Cellino, A., Tanga, P.: NOTE: Estimated Abundance of Atens and Asteroids Evolving on Orbits between Earth and Sun. Icarus 143, 421–424 (2000a)CrossRefGoogle Scholar
  54. Michel, P., Migliorini, F., Morbidelli, A., Zappalà, V.: The population of Mars crossers: Classification and dynamical evolution. Icarus 145, 332–347 (2000b)CrossRefGoogle Scholar
  55. Migliorini, F., Michel, P., Morbidelli, A., Nesvorný, D., Zappalà, V.: Origin of multikilometer Earth- and Mars-crossing asteroids: A quantitative simulation. Science 281, 2022–2024 (1998)CrossRefGoogle Scholar
  56. Mikkola, S., Innanen, K.: A numerical exploration of the evolution of Trojan-type asteroidal orbits. The Astronomical Journal 104, 1641–1649 (1992)CrossRefGoogle Scholar
  57. Milani, A.: Planet Crossing Asteroids and Parallel Computing: Project Spaceguard. Celestial Mechanics 45, 111–118 (1989)CrossRefGoogle Scholar
  58. Milani, A.: The Trojan asteroid belt: Proper elements, stability, chaos and families. Celestial Mechanics and Dynamical Astronomy 57, 59–94 (1993)MathSciNetCrossRefGoogle Scholar
  59. Milani, A., Carpino, M., Hahn, G., Nobili, A.M.: Dynamics of planet-crossing asteroids - Classes of orbital behavior. Icarus 78, 212–269 (1989)CrossRefGoogle Scholar
  60. Milani, A., Knežević, Z.: Secular perturbation theory and computation of asteroid proper elements. Celestial Mechanics and Dynamical Astronomy 49, 347–411 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  61. Milani, A., Knežević, Z.: Asteroid proper elements and the dynamical structure of the asteroid main belt. Icarus 107, 219–254 (1994)CrossRefGoogle Scholar
  62. Milani, A., Knežević, Z., Novaković, B., Cellino, A.: Dynamics of the Hungaria asteroids. Icarus 207, 769–794 (2010)CrossRefGoogle Scholar
  63. Moons, M., Morbidelli, A.: Secular resonances in mean motion commensurabilities: The 4:1, 3:1, 5:2 and 7:3 cases. Icarus 114, 33–50 (1995)CrossRefGoogle Scholar
  64. Moons, M., Morbidelli, A., Migliorini, F.: Dynamical structure of the 2:1 commensurability and the origin of the resonant asteroids. Icarus 135, 458–468 (1998)CrossRefGoogle Scholar
  65. Morais, M.H.M., Morbidelli, A.: The Population of Near-Earth Asteroids in Coorbital Motion with the Earth. Icarus 160, 1–9 (2002)CrossRefGoogle Scholar
  66. Morbidelli, A.: Modern celestial mechanics: aspects of solar system dynamics. Taylor and Francis, London (2002) ISBN 0415279399 Google Scholar
  67. Morbidelli, A., Gladman, B.: Orbital and temporal distribution of meteorites originating in the asteroid belt. Meteoritics & Planet. Sci. 33, 999–1016 (1998)CrossRefGoogle Scholar
  68. Morbidelli, A., Nesvorný, D.: Numerous weak resonances drive asteroids towards terrestrial planets orbits. Icarus 139, 295–308 (1999)CrossRefGoogle Scholar
  69. Morbidelli, A., Bottke, W.F., Froeschlé, C., Michel, P.: Origin and Evolution of Near-Earth Objects. In: Bottke, W.F., Cellino, A., Paolicchi, P., Binzel, R. (eds.) Asteroids III, pp. 409–422. University of Arizona Press, Tucson (2002)Google Scholar
  70. Murray, N., Holman, M.: Diffusive chaos in the outer asteroid belt. The Astronomical Journal 114, 1246–1252 (1997)CrossRefGoogle Scholar
  71. Nesvorný, D., Ferraz-Mello, S.: On the asteroidal population of the first-order Jovian resonances. Icarus 130, 247–258 (1997)CrossRefGoogle Scholar
  72. Nesvorný, D., Morbidelli, A.: Three-Body Mean Motion Resonances and the Chaotic Structure of the Asteroid Belt. The Astronomical Journal 116, 3029–3037 (1998a)CrossRefGoogle Scholar
  73. Nesvorný, D., Morbidelli, A.: An Analytic Model of Three-Body Mean Motion. Celestial Mechanics and Dynamical Astronomy 71, 243–271 (1998b)MathSciNetCrossRefGoogle Scholar
  74. Nesvorný, D., Dones, L.: How Long-Lived Are the Hypothetical Trojan Populations of Saturn, Uranus, and Neptune? Icarus 160, 271–288 (2002)CrossRefGoogle Scholar
  75. Nesvorný, D., Ferraz-Mello, S., Holman, M., Morbidelli, A.: Regular and chaotic dynamics in the mean motion resonances: Implications for the structure and evolution of the asteroid belt. In: Bottke, W.F., Cellino, A., Paolicchi, P., Binzel, R. (eds.) Asteroids III, pp. 379–394. University of Arizona Press, Tucson (2002)Google Scholar
  76. Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž.: Evidence for asteroid space weathering from the Sloan Digital Sky Survey. Icarus 173, 132–152 (2005)CrossRefGoogle Scholar
  77. Novaković, B., Tsiganis, K., Knežević, Z.: Chaotic transport and chronology of complex asteroid families. Monthly Notices of the Royal Astronomical Society 402, 1263–1272 (2010)CrossRefGoogle Scholar
  78. Novaković, B.: Portrait of Theobalda as a young asteroid family. Monthly Notices of the Royal Astronomical Society 407, 1477–1486 (2010)CrossRefGoogle Scholar
  79. Novaković, B., Cellino, A., Knežević, Z.: Families among high-inclination asteroids. Icarus 216, 69–81 (2011)CrossRefGoogle Scholar
  80. Öpik, E.J.: Interplanetary encounters - Close-range gravitational interactions. In: Kopal, Z., Cameron, A.G.W. (eds.) Developments in Solar System and Space Science, p. 155. Elsevier, Amsterdam (1976)Google Scholar
  81. Rabinowitz, D., Helin, E., Lawrence, K., Pravdo, S.: A reduced estimate of the number of kilometre-sized near-Earth asteroids. Nature 403, 165–166 (2000)CrossRefGoogle Scholar
  82. Robutel, P., Gabern, F., Jorba, A.: The Observed Trojans and the Global Dynamics Around The Lagrangian Points of the Sun Jupiter System. Celestial Mechanics and Dynamical Astronomy 92, 53–69 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  83. Rubincam, D.P.: Radiative Spin-up and Spin-down of Small Asteroids. Icarus 148, 2–11 (2000)CrossRefGoogle Scholar
  84. Schubart, J.: Three characteristic parameters of orbits of Hilda-type asteroids. Astronomy and Astrophysics 114, 200–204 (1982)Google Scholar
  85. Schumacher, G., Gay, J.: An attempt to detect Vulcanoids with SOHO/LASCO images. I. Scale relativity and quantization of the solar system. Astronomy and Astrophysics 368, 1108–1114 (2001)CrossRefGoogle Scholar
  86. Schunová, E., Granvik, M., Jedicke, R., Gronchi, G., Wainscoat, R., Abe, S.: Searching for the first near-Earth object family. Icarus 220, 1050–1063 (2012)CrossRefGoogle Scholar
  87. Stacey, G.R., Connors, M.: Delta-v requirements for earth co-orbital rendezvous missions. Planetary and Space Science 57, 822–829 (2009)CrossRefGoogle Scholar
  88. Stuart, J.S., Binzel, R.P.: Bias-Corrected Population, Size Distribution, and Impact Hazard for the Near-Earth Objects. Icarus 170, 295–311 (2004)CrossRefGoogle Scholar
  89. Tabachnik, S.A., Evans, N.W.: Asteroids in the inner Solar system - I.  Existence. Monthly Notices of the Royal Astronomical Society 319, 63–79 (2000)CrossRefGoogle Scholar
  90. Tancredi, G.: An Asteroid in a Earth-like Orbit. Celestial Mechanics and Dynamical Astronomy 69, 119–132 (1997)CrossRefGoogle Scholar
  91. Taylor, P.A., 11 colleagues: Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect. Science 316, 274 (2007)Google Scholar
  92. Vokrouhlický, D., Farinella, P., Bottke, W.F.: The Depletion of the Putative Vulcanoid Population via the Yarkovsky Effect. Icarus 148, 147–152 (2000)Google Scholar
  93. Warner, B.D., Harris, A.W., Vokrouhlický, D., Nesvorný, D., Bottke, W.F.: Analysis of the Hungaria asteroid population. Icarus 204, 172–182 (2009)CrossRefGoogle Scholar
  94. Weidenschilling, S.J.: Iron/silicate fractionation and the origin of Mercury. Icarus 35, 99–111 (1978)CrossRefGoogle Scholar
  95. Weissman, P.R., Bottke, W.F., Levison, H.: Evolution of comets into asteroids. In: Bottke, W.F., Cellino, A., Paolicchi, P., Binzel, R. (eds.) Asteroids III, pp. 669–686. University of Arizona Press, Tucson (2002)Google Scholar
  96. Whitman, K., Morbidelli, A., Jedicke, R.: The size frequency distribution of dormant Jupiter family comets. Icarus 183, 101–114 (2006)CrossRefGoogle Scholar
  97. Williams, J.G.: Secular Perturbations in the Solar System. Ph.D. Thesis, University of California, Los Angeles (1969)Google Scholar
  98. Xu, R., Cui, P., Dong Qiao, D., Luan, E.: Design and optimization of trajectory to Near-Earth asteroid for sample return mission using gravity assists. Advances in Space Research 40, 200–225 (2007)Google Scholar
  99. Yuasa, M.: Theory of Secular Perturbations of Asteroids Including Terms of Higher Orders and Higher Degrees. Publications of the Astronomical Society of Japan 25, 399 (1973)Google Scholar
  100. Zappalà, V., Bendjoya, P., Cellino, A., Farinella, P., Froeschle, C.: Asteroid families: Search of a 12,487-asteroid sample using two different clustering techniques. Icarus 116, 291–314 (1995)CrossRefGoogle Scholar
  101. Zappalà, V., Cellino, A., Gladman, B.J., Manley, S., Migliorini, F.: NOTE: Asteroid Showers on Earth after Family Breakup Events. Icarus 134, 176–179 (1998)CrossRefGoogle Scholar
  102. Zappalà, V., Cellino, A., Dell’Oro, A.: A Search for the Collisional Parent Bodies of Large NEAs. Icarus 157, 280–296 (2002)CrossRefGoogle Scholar
  103. Zhao, H., Lu, H., Zhaori, G., Yao, J., Ma, Y.: The search for vulcanoids in the 2008 total solar eclipse. Science in China G: Physics and Astronomy 52, 1790–1793 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of BelgradeBelgradeSerbia

Personalised recommendations