Advertisement

Asteroids pp 439-458 | Cite as

Available Asteroid Resources in the Earth’s Neighbourhood

Chapter

Abstract

Any envisioned future for space exploration involves both a growth in large space structures and a human presence in space. Some possible examples of future space endeavours are large space solar power satellites, space tourism or more visionary human space settlements. This, of course, implies a much larger mass of material in-use in space, for both structural mass and life support. The traditional approach to deliver material into orbit has always been to overcome the Earth’s gravity well, which is, arguably, not the most effective means if we bear in mind that the energy cost to reach low Earth orbit (LEO) is already “half-way to anywhere”.[“Once you get to Earth orbit, you’re halfway to anywhere in the solar system."-Robert A. Heinlein].

Keywords

Platinum Group Metal Astronomical Unit Earth Object Earth Asteroid Ballistic Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S.: Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects. Icarus 156, 399–433 (2002)CrossRefGoogle Scholar
  2. Bowell, E., Hapke, B., Domingue, D., Lumme, K., Peltoniemi, J., Harris, A.W.: Application of Photometric Models to Asteroids. In: Binzel, R.P., Gehrels, R.P., Matthews, M.S. (eds.) Asteroids II. Univ. of Arizona Press, Tucson (1989)Google Scholar
  3. Brophy, J.: The Dawn Ion Propulsion System. Space Science Reviews 163, 251–261 (2011)CrossRefGoogle Scholar
  4. Brophy, J., et al.: Asteroid Retrieval Feasibility Study. Keck Institute for Space Studies, Califonia Institute of Technology, Jet Propulsion Laboratory, Pasadena, California (2012)Google Scholar
  5. Brown, P., Spalding, R.E., Revelle, D.O., Ragliaferri, E., Worden, S.P.: The Flux of Small Near-Earth Objects Colliding With the Earth. Nature 420, 294–296 (2002)CrossRefGoogle Scholar
  6. Bus, S.J., Binzel, R.P.: Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. Icarus 158, 146–177 (2002)CrossRefGoogle Scholar
  7. Chapman, C.R.: The Hazard of Near-Earth Asteroid Impacts on Earth. Earth and Planetary Science Letters 2, 1–15 (2004)CrossRefGoogle Scholar
  8. Chesley, S.R., Chodas, P.W., Milani, A., Yeomans, D.K.: Quantifying the Risk Posed by Potential Earth Impacts. Icarus 159, 423–432 (2002)CrossRefGoogle Scholar
  9. Crandall, W.B.: Abundant Planet: Enabling Profitable Asteroid Mining. In: Planet, A. (ed.) Redwood City, CA 94062: Abundant Planet 501(C)3 Organization (2009)Google Scholar
  10. Elvis, M.: Let’s Mine Asteroids — For Science and Profit. Nature 485, 549 (2012)CrossRefGoogle Scholar
  11. Kargel, J.S.: Metalliferous Asteroids as Potential Sources of Precious Metals. J. Geophys. Res. 99, 21129–21141 (1994)CrossRefGoogle Scholar
  12. Kawaguchi, J., Fujiwara, A., Uesugi, T.: Hayabusa-Its Technology and Science Accomplishment Summary and Hayabusa-2. Acta Astronautica 62, 639–647 (2008)CrossRefGoogle Scholar
  13. Langmaier, J., Elliott, J., Clark, K., Pappalardo, R., Reh, K., Spilker, T.: Assessment of Alternative Europa Mission Architectures. JPL Publication 08-01. NASA (2008)Google Scholar
  14. Lewis, J.S.: Mining the Sky: Untold Riches from Asteroids, Comets and Planets. Helix Books/Perseus Books, Reading, Massachusetts (1996)Google Scholar
  15. Lewis, J.S., Hutson, M.L.: Asteroidal Resource Opportunities Suggested By Meteorite Data. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space. University of Arizona Press, Tucson (1993)Google Scholar
  16. Lo, M.W., Ross, S.D.: The Lunar L1 Gateway: Portal to the Stars and Beyond. In: AIAA Space 2001 Conference, Albuquerque, New Mexico (2001)Google Scholar
  17. Mainzer, A., Grav, T., Bauer, J., Masiero, J., Mcmillan, R.S., Cutri, R.M., Walker, R., Wright, E., Eisenhardt, P., Tholen, D.J., Spahr, T., Jedicke, R., Denneau, L., Debaun, E., Elsbury, D., Gautier, T., Gomillion, S., Hand, E., Mo, W., Watkins, J., Wilkins, A., Bryngelson, G.L., Del Pino Molina, A., Desai, S., Gómez Camus, M., Hidalgo, S.L., Konstantopoulos, I., Larsen, J.A., Maleszewski, C., Malkan, M.A., Mauduit, J.C., Mullan, B.L., Olszewski, E.W., Pforr, J., Saro, A., Scotti, J.V., Wasserman, L.H.: NEOWISE Observations of Near-Earth Objects: Preliminary Results. The Astrophysical Journal 743, 156 (2011)CrossRefGoogle Scholar
  18. Mauk, M.G.: Silicon Solar Cells: Physical Metallurgy Principles. Journal of the Minerals, Metals and Materials Society 55, 38–42 (2003)CrossRefGoogle Scholar
  19. Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M.E., Kimura, M., Tsuchiyama, A., Nakato, A., Ogami, T., Ishida, H., Uesugi, M., Yada, T., Shirai, K., Fujimura, A., Okazaki, R., Sandford, S.A., Ishibashi, Y., Abe, M., Okada, T., Ueno, M., Mukai, T., Yoshikawa, M., Kawaguchi, J.: Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites. Science 333, 1113–1116 (2011)CrossRefGoogle Scholar
  20. Nichols, C.R.: Volatile Products From Carbonaceous Asteroids. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space. University of Arizona Press, Tucson (1993)Google Scholar
  21. O’Leary, B., Gaffey, M.J., Ross, D.J., Salkeld, R.: Retrieval of Asteroidal Materials. Space Resources and Settlements (1979)Google Scholar
  22. Opik, E.J.: Collision Probabilities With the Planets and the Distribution of Interplanetary Matter. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 54, 165–199 (1951)Google Scholar
  23. Rayman, M.D., Fraschetti, T.C., Raymond, C.A., Russell, C.T.: Dawn: A Mission in Development for Exploration of Main Belt Asteroids Vesta and Ceres. Acta Astronautica 58, 605–616 (2006)CrossRefGoogle Scholar
  24. Review of U.S. Human Spaceflight Plans Committee 2009. HSF Final Report: Seeking a Human Spaceflight Program Worthy of a Great Nation. NaASA (2009) Google Scholar
  25. Ross, S.D.: Near-Earth Asteroid Mining. Department of Control and Dynamical Systems, Pasadena (2001)Google Scholar
  26. Ross, S.D.: The Interplanetary Transport Network. American Scientist 94, 230 (2006)Google Scholar
  27. Sanchez, J.P., García, D., Alessi, E.M., Mcinnes, C.R.: Gravitational Capture Opportunities for Asteroid Retrieval Missions. In: 63rd International Astronautical Congress. International Astronautical Federation, Naples (2012)Google Scholar
  28. Sanchez, J.P., Mcinnes, C.R.: On the Ballistic Capture of Asteroids for Resource Utilization. In: 62nd International Astronautical Congress. IAF Cape Town, SA (2011)Google Scholar
  29. Sanchez, J.P., Mcinnes, C.R.: Assessment on the Feasibility of Future Shepherding of Asteroid Resources. Acta Astronautica 73, 49–66 (2012a)CrossRefGoogle Scholar
  30. Sanchez, J.P., Mcinnes, C.R.: Synergistic Approach of Asteroid Exploitation and Planetary Protection. Advances in Space Research 49, 667–685 (2012b)CrossRefGoogle Scholar
  31. Stokes, G.H., Yeomans, D.K., Bottke, W.F., Chesley, S.R., Evans, J.B., Gold, R.E., Harris, A.W., Jewitt, D., Kelso, T.S., Mcmillan, R.S., Spahr, T.B., Worden, P.: Study to Determine the Feasibility of Extending the Search for Near-Earth Objects to Smaller Limiting Diameters. Report of the Near-Earth Object Science Definition Team. National Aeronautics and Space Administration, Washington, D.C. (2003)Google Scholar
  32. Stuart, J.S.: Observational Constraints on the Number, Albedos, Size, and Impact Hazards of the Near-Earth Asteroids. Massachusetts Institute of Technology (2003)Google Scholar
  33. Tsiolkovsky, K.E.: The Exploration of Cosmic Space by Means of Reaction Devices. Scientific Review (1903)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of StrathclydeGlasgowUK

Personalised recommendations