Asteroids pp 379-401 | Cite as

Curing of Construction Composite Materials on Asteroids



Human activity on asteroids will need constructions. It could be human habitat, base for mining machines, space station for communication, observation or deep space missions. The first constructions can be delivered from Earth, but an ability of space carriers are limited that limits the size and mass of the delivered constructions. Therefore, the extensive and long exploitation requires a technology to create new constructions on asteroid surface, under asteroid surface or near asteroid.


Epoxy Matrix Space Environment Geostationary Earth Orbit Asteroid Surface Deep Space Mission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allred, R., Hoyt, A.E., McElroy, P.M., Scarborozgh, S., Cadogan, D.P.: UV rigidizable carbon-reinforced isogrid inflatable booms. AIAA-2002-1202 (2002)Google Scholar
  2. Bar-Cohen, Y.: Transition of EAP material from novelty to practical applications – are we there yet? In: SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Newport, USA, March 5-8, Paper No. 4329-02 (2001)Google Scholar
  3. Barbashev, E.A., Dushin, M.I., Ivonin, Y.N., Kozin, V.I., Nikishin, E.F., Panshin, B.I., Perov, B.V.: Some results of tests of polymer materials after exposition in conditions of free space. In: Space Technology and Material Science, Moscow, Nauka (1982)Google Scholar
  4. Bilen, S., Domonkos, M., Gallimore, A.: Simulating ionospheric plasma with a hollow cathode in a large vacuum chamber. J. of Spacecraft and Rockets 38, 617–621 (2001)CrossRefGoogle Scholar
  5. Briskman, V.A., Yudina, T.M., Kostarev, K.G., Kondyurin, A.V., Leontyev, V.B., Levkovich, M.G., Mashinsky, A.L., Nechitailo, G.S.: Polymerization in microgravity as a new process in space technology. Acta Astronautica 48, 169–180 (2001)CrossRefGoogle Scholar
  6. Cadogan, D., Stein, J., Grahne, M.: Inflatable composite habitat structures for Lunar and Mars exploration. In: 49th International Astronautical Congress, Melbourne, Australia, September 28-October 2, IAA-98-IAA.13.2.04 (1998)Google Scholar
  7. Cadogan, D., Grahne, M., Mikulas, M.: Inflatable space structures: a new paradigm for space structure design. In: 49th International Astronautical Congress, Melbourne, Australia, September 28-October 2, IAF-98-I.1.02 (1998a)Google Scholar
  8. Cadogan, D.P., Lin, J.K., Grahne, M.S.: Inflatable solar array technology. AIAA-99-1075 (1999)Google Scholar
  9. Cadogan, D.P., Scarborough, S.E.: Rigidizable materials for use in Gossamer Space Inflatable structures. AIAA-2001-1417 (2001)Google Scholar
  10. Cadogan, D.P., Scarborough, S.E., Lin, J.K., Sapna, G.H.: Shape memory composite development for use in Gossamer space inflatable structures. AIAA 2002-1372 (2002)Google Scholar
  11. Cassapakis, C., Thomas, M.: Inflatable structures technology development overview. AIAA-95-3738 (1995)Google Scholar
  12. Connell, J.W.: The effects of low-Earth orbit atomic oxygen exposure on Phenylphosphine oxide-containing polymers. Final report. Evaluation of Space Environment and Effects on Materials (ESEM). Appendix D, NASA Technical Report (1999)Google Scholar
  13. Czaubon, B., Paillos, A., Siffre, J., Thomas, R.: Mass spectrometric analysis of reaction products of fast oxygen atoms-material interactions. J. of Spacecraft and Rockets 35, 797–804 (1998)CrossRefGoogle Scholar
  14. Darooka, D.K., Jensen, D.W.: Advanced space structure concepts and their development. AIAA-2001-1257 (2001)Google Scholar
  15. Darooka, D.K., Scarborough, S.E., Cadogan, D.P.: An evaluation of inflatable truss frame for space applications. AIAA 2001-1614 (2001)Google Scholar
  16. de Groh, K.K., Banks, B.A., Hammerstrom, A.M., Youngstrom, E.E., Kaminski, C., Marx, L.M., Fine, E.S., Gummow, J.D., Wright, D.: MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment. In: Proceedings of the Conference on ISS Utilization - 2001, Cape Canaveral, Fl, AIAA 2001-4923 (2001); also in NASA TM-2001-211311Google Scholar
  17. de Groh, K.K., Morgana, M.: The Effect of Heating on the Degradation of Ground Laboratory and Space Irradiated Teflon FEP. NASA TM-2002-211704 (2002)Google Scholar
  18. Derbes, B.: Case studies in inflatable rigidizable structural concepts for space power. AIAA-99-1089 (1999)Google Scholar
  19. Dever, J., de Groh, K.K., Townsend, J.A., Wang, L.L.: Mechanical Properties Degradation of teflon FEP Returned from the Hubble Space telescope, NASA report 1998-206618, AIAA-98-0895 (1998)Google Scholar
  20. Dever, J., Semmel, C., Edwards, D., Messer, R., Peters, W., Carter, A., Puckett, D.: Radiation durability of candidate polymer films for the next generation space telescope sunshield. NASA TM 2002-211508 and AIAA-2002-1564 (2002)Google Scholar
  21. Dever, J.A., Pietromica, A.J., Stueber, T., Sechkar, E., Messer, R.: Simulated space vacuum ultraviolet (VUV) exposure testing for polymer films. NASA TM-2002-211337 and AIAA-2001-1054 (2002a)Google Scholar
  22. ECSS Space Environment Standard, ECSS E-10-04, Guide for LEO mission, ECSS-Q-70-04 (outgassing), ESA (2000)Google Scholar
  23. Favorskii, O.N., Kadaner, Ya, S.: About heat transfer in space. Visshaya Shkola, Moscow (1972) Google Scholar
  24. Freeland, R.E., Veal, G.R.: Significance of the inflatable antenna experiment technology. AIAA-98-2104 (1998)Google Scholar
  25. Fu, J.H., Graves, G.R.: Thermal Environments for Space Shuttle Payloads. In: AIAA Shuttle Environment and Operation II Conference Proceedings, p. 18 (1985)Google Scholar
  26. Golub, M.A., Wydeven, T.: Reactions of atomic oxygen (O(3P)) with various polymer films. Polymer Degradation and Stability 22, 325–338 (1988)CrossRefGoogle Scholar
  27. Gonzales, R.I., Phillips, S.H., Hoflund, G.B.: In situ oxygen atom erosion study of polyhedral oligomeric silsesquioxane-siloxane copolymer. J. of Spacecraft and Rockets 37, 463–467 (2000)CrossRefGoogle Scholar
  28. Grahne, M.S., Cadogan, D.P.: Inflatable solar arrays: revolutionary technology? ILC Dover, Inc., 1999-01-2551 and Sasakawa International Center for Space Architecture, SICSA outreach, Special Design Project Issue 1, No.7 (1988)Google Scholar
  29. Grossman, E., Lifshitz, Y., Wolan, J.T., Mount, C.K., Hoflund, G.B.: In situ erosion study of Kapton using novel hyperthermal oxygen atom source. J. of Spacecraft and Rockets 36, 75–78 (1999)CrossRefGoogle Scholar
  30. Grossman, G., Williams, G.: Inflatable concentrators for solar propulsion and dynamic space power. Journal of Solar Energy Engineering 112, 299 (1990)CrossRefGoogle Scholar
  31. Guidanean, K., Williams, G.T.: An inflatable rigidizable truss structure with complex joints. AIAA-98-2105 (1998)Google Scholar
  32. Haruvy, Y.: Risk Assessment of Atomic-Oxygen-Effected Surface Erosion and Induced Outgassing of Polymeric Materials in LOE Space Systems. ESA Journal 14, 109–119 (1990)Google Scholar
  33. Iwata, M., Ohnishi, A., Hirosawa, H., Tohyama, F.: Measurement and Evaluation of Thermal Control Material with Polyimide for Space Use. J. of Spacecraft and Rockets 38, 504–509 (2001)CrossRefGoogle Scholar
  34. Kato, S., Takeshita, Y., Sakai, Y., Muragishi, O., Shibayama, Y., Natori, M.: Concept of inflatable elements supported by truss structure for reflector application. Acta Astronautica 19, 539–553 (1989)CrossRefGoogle Scholar
  35. Kiefer, R.L., Orwold, R.A., Harrison, J.E., Ronesi, V.M., Thibeault, S.A.: The effects of the space environment on Polyetherimide films. Final report. Evaluation of Space Environment and Effects on Materials (ESEM), Appendix C, NASA Technical Report (1999)Google Scholar
  36. Klein, T.F., Lesieutre, G.A.: Space environment effects on damping of polymer matrix carbon fiber composites. J. of Spacecraft and Rockets 37, 519–525 (2000)CrossRefGoogle Scholar
  37. Klyachkin, Y.S., Trushnikov, V.A., Kondyurin, A.V., Imankulova, S.A.: Study of the nature of interaction of EPDM-40 rubber with an epoxy adhesive. J. Adhesion Science and Technology 6, 1137–1145 (1992)CrossRefGoogle Scholar
  38. Kondyurin, A.V.: Building the shells of large space stations by the polymerisation of epoxy composites in open space. Plasticheskie massy 8: 25. Translated in Int. Polymer Sci. and Technol. 25(4), T/78 (1997)Google Scholar
  39. Kondyurin, A.: Large size station on Mars surface by the way of polymerization of composite polymer material. In: Fourth Canadian Space Exploration Workshop. Science Payloads for Mars, Abstracts, Ottawa, Canada, November 15-16 (2002)Google Scholar
  40. Kondyurin, A.: Direct Curing of Polymer Construction Material in Simulated Earth’s Moon Surface Environment. Journal of Space Craft and Rockets 48, 378–384 (2011)Google Scholar
  41. Kondyurin, A.: Curing of composite materials for an inflatable construction on the moon. In: Badescu, V. (ed.) Moon. Prospective Energy and Material Resources, vol. 102, pp. 503–518. Springer, Heidelberg (2012)Google Scholar
  42. Kondyurin, A., Mesyats, G., Klyachkin, Y.: Creation of High-Size Space Station by Polymerization of Composite Materials in Free Space. J. of the Japan Soc. of Microgravity Appl. 15, 61–65 (1998)Google Scholar
  43. Kondyurin, A., Kostarev, K., Bagara, M.: Polymerization processes of epoxy plastic in simulated free space conditions. Acta Astronautica 48, 109–113 (2001)CrossRefGoogle Scholar
  44. Kondyurin, A., Lauke, B., Richter, E.: Polymerization Process of Epoxy Matrix Composites under Simulated Free Space Conditions. High Performance Polymers 16, 163–175 (2004)CrossRefGoogle Scholar
  45. Kondyurin, A., Bilek, M.: Ion Beam Treatment of Polymers. Application aspects from medicine to space. Elsevier, Oxford (2008)Google Scholar
  46. Kondyurin, A.V., Komar, L.A., Svistkov, A.L.: Modelling of curing of composite materials for the inflatable structure of a lunar space base. Mechanics of Composite Materials and Constructions 15, 512–526 (2009)Google Scholar
  47. Kondyurin, A.V., Nechitailo, G.S.: Composite material for Inflatable Structures Photocured under Space Flight Conditions. Cosmonautics and Rockets 3(56), 182–190 (2009a)Google Scholar
  48. Kondyurin, A.V., Komar, L.A., Svistkov, A.L.: Modelling of curing reaction kinetics in composite material based on epoxy matrix. Mechanics of Composite Materials 16, 597–611 (2010)Google Scholar
  49. Kondyurin, A., Kondyurina, I., Bilek, M.: Composite materials with uncured epoxy matrix exposed in stratosphere during NASA stratospheric balloon flight (2010a),
  50. Kondyurin, A., Kondyurina, I., Bilek, M., de Groh, K.: Composite materials with uncured epoxy matrix exposed in stratosphere during NASA stratospheric balloon flight. NASA TM 216512 (2013)Google Scholar
  51. Kondyurina, I., Kondyurin, A., Lauke, B., Figiel, L., Vogel, R., Reuter, U.: Polymerisation of Composite Materials in Space Environment for Development of a Moon Base. Advances in Space Research 37, 109–115 (2006)CrossRefGoogle Scholar
  52. Koontz, S., Leger, L., Albyn, K., Cross, J.: Vacuum ultraviolet radiation / atomic oxygen synergism in materials reactivity. J. of Spacecraft 27, 346–348 (1989)CrossRefGoogle Scholar
  53. Koontz, S., Albyn, K., Leger, L.: Atomic oxygen testing with thermal atom systems: a critical evaluation. J. of Spacecraft 28, 315–323 (1991)CrossRefGoogle Scholar
  54. Kroshkin, M.G.: Physical-chemical bases of space studies. Mashinostroenie, Moscow (1969)Google Scholar
  55. Lai, S.T., Della-Rose, D.J.: Spacecraft charging at Geosynchronous altitudes: new evidence of existence of critical temperature. J. of Spacecraft and Rockets 38, 922–928 (2001)CrossRefGoogle Scholar
  56. Lee, C.-H., Chen, L.W.: Reactive probability of atomic oxygen with material surfaces in low Earth orbit. J. of Spacecraft and Rockets 37, 252–256 (2000)CrossRefGoogle Scholar
  57. Lura, F., Hagelschuler, D., Abraimov, V.V.: The complex simulation of essential space environment factors for the investigation of materials and surfaces for space applications. KOBE. DLR paper, Berlin, Germany (2003)Google Scholar
  58. Mesyats, G., Klyachkin, Y., Gavrilov, N., Kondyurin, A.: Adhesion of Polytetrafluorethylene modified by an ion beam. Vacuum 52, 285–289 (1999)CrossRefGoogle Scholar
  59. Pippin, H.G.: Final report on analysis of Boeing specimens flown on the effects of space environment on materials experiment. Boeing Phantom Works (1999)Google Scholar
  60. Purvis, C.K., Garrett, H.B., Whittlesey, A.C., Stevens, N.J.: Design guidelines for assessing and controlling spacecraft charging effects. NASA TP-2361 (1984)Google Scholar
  61. Sandy, C.R.: Next generation space telescope inflatable sunshield development. ILC Dover, Inc. (2000)Google Scholar
  62. Yu, S., Efremov, I., Blagov, V., Cherniavskiy, A., Yu, K., Tziganko, O., Medzmariahvili, E., Kinteraya, G., Bedukadze, G., Datashvili, L., Djanikashvili, M., Khatiashvili, N.: Space Experiment REFLECTOR on Orbital Station MIR. In: European Conference on Spacecraft Structures, Materials and Mechanical Testing. ESTEC, Noordwijk, The Netherlands (2000)Google Scholar
  63. Simburger, E.J., Matsumoto, J., Lin, J., Knoll, C., Rawal, S., Perry, A., Barnett, D., Peterson, T., Kerslake, T., Curtis, H.: Development of a multifunctional inflatable structure for the powersphere concept. AIAA 2002-1707 (2002)Google Scholar
  64. Teichman, L.A., Slemp, W.S., Witte Jr., W.G.: Evaluation of selected thermal control coatings for long-life space structures. NASA TM-4319 (1992)Google Scholar
  65. Veldman, S.L., Vermeeren, C.A.J.R.: Inflatable structures in aerospace engineering - an overview. ESA paper (2002)Google Scholar
  66. Walter, H.U.: Fluid sciences and materials science in space. A European Perspective. Springer, Berlin (1987)Google Scholar
  67. Willey, C.E., Schulze, R.C., Bokulic, R.S., Skullney, W.E., Lin, J.K.H., Cadogan, D.P., Knoll, C.F.: A Hybrid Inflatable Dish Antenna System for Spacecraft. AIAA 2001-1258 (2001)Google Scholar
  68. Wilson, A.: A history of balloon satellites. J. of the British Interplanetary Society 34, 10–22 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of SydneyDarlingtonAustralia

Personalised recommendations