Asteroids pp 287-343 | Cite as

Asteroids: Anchoring and Sample Acquisition Approaches in Support of Science, Exploration, and In situ Resource Utilization



The goal of this chapter is to describe technologies related to asteroid sampling and mining. In particular, the chapter discusses various methods of anchoring to a small body (a prerequisite for sampling and mining missions) as well as sample acquisition technologies and large scale mining options. These technologies are critical to enabling exploration, and utilization of asteroids by NASA and private companies.


Unconfined Compressive Strength Lunar Regolith Anchor System Sample Acquisition Rosetta Mission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrea, M., Chesley, S., Sansaturio, M., Bernardi, F., Valsecchi, G., Arratia, O.: Long term impact risk for (101955) 1999 RQ36. Icarus 203(2), 460–471 (2009)CrossRefGoogle Scholar
  2. Asbeck, A.T., Kim, S., Cutkosky, M., Provancher, W., Lanzetta, M.: Scaling hard vertical surfaces with compliant microspine arrays. Int. J. Robot. Res. 25(12), 1165–1179 (2006)CrossRefGoogle Scholar
  3. Ball, A., Garry, J., Lorenz, R., Kerzhanovich, V.: Planetary Landers and Entry Probes. Cambridge University Press (2007)Google Scholar
  4. Bar-Cohen, Y., Zacny, K. (eds.): Drilling in Extreme Environments Penetration and Sampling on Earth and Other Planets. John Wiley & Sons, New York (2009)Google Scholar
  5. Barnouin-Jha, O.S., Barnouin-Jha, K., Cheng, A.F., Willey, C., Sadilek, A.: Sampling a Planetary Surface with a Pyrotechnic Rock Chipper. In: Proc. IEEE Aerospace Conference, March 6-13 (2004)Google Scholar
  6. Bonitz, R.: The Brush Wheel Sampler - a Sampling Device for Small-body Touch-and-Go Missions. In: 2012 IEEE Aerospace Conference, Big Sky, MT, March 3-10 (2012)Google Scholar
  7. Campins, H., et al.: Spitzer Observations of spacecraft target 162173 (1999 JU3). Astronomy and Astrophysics 503, L17–L20 (2009)Google Scholar
  8. Fujiwara, A., et al.: The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science 312, 1330–1334 (2006)CrossRefGoogle Scholar
  9. Gaffey, M.J., Cloutis, E.A., Kelley, M.S., Reed, K.L.: Mineralogy of Asteroids. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 183–204. University of Arizona Press, Tucson (2002)Google Scholar
  10. Biele, J., et al.: Current status and scientific capabilities of the Rosetta lander payload. Advances in Space Research 29, 1199–1208 (2002)CrossRefGoogle Scholar
  11. Biele, J., et al.: The putative mechanical strength of comet surface material applied to landing on a comet. Acta Astronautica 65, 1168–1178 (2009)CrossRefGoogle Scholar
  12. Biele, J., Ulamec, S.: Capabilities of Philae, the Rosetta Lander. Space Sci. Rev. 138, 275–289 (2008)CrossRefGoogle Scholar
  13. Britt, D.T., Yeomans, D., Housen, K., Consolmagno, G.: Asteroid Density, Porosity, and Structure. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 485–500. University of Arizona Press, TucsonGoogle Scholar
  14. Brophy, J.R., Gershman, R., Landau, D., Yeomans, D., Polk, J., Porter, C., Williams, W., Allen, C., Asphaug, E.: Asteroid Return Mission Feasibility Study. AIAA-2011-5665. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, California, July 31-August 3 (2011)Google Scholar
  15. Brophy, et al.: Asteroid Retrieval Feasibility Study. Keck Institute for Space Studies, California Institute of Technology, Jet Propulsion Laboratory (2012),
  16. Craft, J., Wilson, J., Chu, P., Zacny, K., Davis, K.: Percussive digging systems for robotic exploration and excavation of planetary and lunar regolith. In: IEEE Aerospace Conference, Big Sky, Montana, March 7-14 (2009)Google Scholar
  17. Finzi, E., Zazzera, B., Dainese, C., Malnati, F., Magnani, P., Re, E., Bologna, P., Espinasse, S., Olivieri, A.: SD2 - How to Sample a Comet. Space Science Reviews 128, 281–299 (2007)CrossRefGoogle Scholar
  18. Fujiwara, A., et al.: The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science 312, 1330–1334 (2006)CrossRefGoogle Scholar
  19. Fujiwara, A., Yano, H.: The asteroidal surface sampling system onboard the Hayabusa spacecraft. Aeronautical and Space Sciences Japan, 8–15 (2005)Google Scholar
  20. Glassmeier, K., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta Mission: Flying Towards the Origin of the Solar System. Space Science Reviews 128, 1–21 (2007)CrossRefGoogle Scholar
  21. Green, A., Zacny, K., Pestana, J., Lieu, D., Mueller, R.: Investigating the Effects of Percussion on Excavation Forces. J. Aerosp. Eng. (2013), doi:10.1061/(ASCE)AS.1943-5525.0000216Google Scholar
  22. Hilchenbach, M., Rosenbauer, H., Chares, B.: First contact with a comet surface: Rosetta lander simulations. In: Luigi, C., et al. (eds.) The New Rosetta Targets. Observations, Simulations and Instrument Performances. Astrophysics and Space Science Library, vol. 311, p. 289. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  23. Jones, T., et al.: Amor: A Lander Mission to Explore the C-Type Triple Near-Earth Asteroid system 2001 SN263. 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, March 7-11, p. 2695. LPI Contribution No. 1608 (2011)Google Scholar
  24. Kawaguchi, J., Fujiwara, A., Uesugi, T.: Hayabusa – Its technology and science accomplishment summary and Hayabusa-2. Acta Astronautica 62, 639–647 (2008)CrossRefGoogle Scholar
  25. Kerr, R.: Magnetic Ripple Hints Gaspra Is Metallic. Science 259, 176 (1993)CrossRefGoogle Scholar
  26. Lewis, J.S.: Mining the Sky, Untold Riches from the Asteroids, Comets, and Planets. Helix Books (1996) ISBN 0-201-47959-1 Google Scholar
  27. Lodders, K.: Solar System Abundances of the Elements. In: Goswami, A., Eswar Reddy, B. (eds.) Principles and Perspectives in Cosmochemistry. Lecture Notes of the Kodai School on ’Synthesis of Elements in Stars’ held at Kodaikanal Observatory, India, April 29-May 13. Astrophysics and Space Science Proceedings, pp. 379–417. Springer, Berlin (2010)CrossRefGoogle Scholar
  28. Mankins, J.: Technology Readiness Level (2005),
  29. Marchesi, M., Campaci, R., Magnani, P., Mugnuolo, R., Nista, A., Olivier, A., Re, E.: Comet sample acquisition for ROSETTA lander mission. In: Proceedings of the 9th European Space Mechanisms and Tribology Symposium, Liège, Belgium. Compiled by Harris, R.A. ESA SP-480, September 19-21, pp. 91–96. ESA Publications Division, Noordwijk (2001)Google Scholar
  30. Normile, D.: Rover Lost in Space. Science 310, 1105 (2005)CrossRefGoogle Scholar
  31. OSIRIS-Rex (2012), (accessed January 10, 2012)
  32. Parness, A.: Microgravity Coring: A Self-Contained Anchor and Drill for Consolidated Rock. In: IEEE Aerospace Conference, Big Sky, MT, USA (2012)Google Scholar
  33. Parness, A., Frost, M., Thatte, N., King, J.: Gravity-Independent Mobility and Drilling on Natural Rock Using Microspines. In: IEEE ICRA, St. Paul, MN, USA (2012)Google Scholar
  34. Parness, A., Frost, M., King, J., Thatte, N.: Demonstrations of Gravity-Independent Mobility and Drilling on Natural Rock Using Microspines, video. In: IEEE ICRA (2012),
  35. Richardson, J., Melosh, H.J., Lisse, C.M., Carcich, B.: A ballistic analysis of the Deep Impact ejecta plume: determining Tempel 1’s gravity, mass and density. Icarus 190, 357–390 (2007)CrossRefGoogle Scholar
  36. Ross, S.: Near-Earth Asteroid Mining. Space Industry Report (December 14, 2001),
  37. SD2 (2013), (accessed January 10, 2013)
  38. Sonter, M.: The Technical and Economic Feasibility of Mining the Near-Earth Asteroids. In: 49th IAF Congress, Melbourne, Australia, September 28-October 2 (1998)Google Scholar
  39. Spenko, M., Haynes, G., Saunders, J., Cutkosky, M., Rizzi, A.: Biologically inspired climbing with a hexapedal robot. J. Field Robotics 25, 223–242 (2008)CrossRefGoogle Scholar
  40. Sullivan, T., Koenig, E., Knudsen, C., Gibson, M.: Pneumatic conveying of materials at partial gravity. Journal of Aerospace Engineering 7, 199–208 (1994)CrossRefGoogle Scholar
  41. Tsiolkovskii, K.: The Exploration of Cosmic Space by Means of Rocket Propulsion. Nauchnoe Obozrenie (Scientific Review) Magazine (5) (1903) (in Russian)Google Scholar
  42. Yano, H., et al.: Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Science 312, 1350–1353 (2006)CrossRefGoogle Scholar
  43. Ulamec, S., et al.: Rosetta Lander—Philae: Implications of an alternative mission. Acta Astronautica 58, 435–441 (2006)CrossRefGoogle Scholar
  44. Ulamec, S., Biele, J.: Surface elements and landing strategies for small bodies missions – Philae and beyond. Advances in Space Research 44, 847–858 (2009)CrossRefGoogle Scholar
  45. Veverka, J., et al.: NEAR at Eros: Initial imaging and spectral results. Science 289, 2088–2097 (2000)CrossRefGoogle Scholar
  46. Veverka, J., et al.: The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature 413, 390–393 (2001)CrossRefGoogle Scholar
  47. Wall, M.: Is Space Big Enough for Two Asteroid-Mining Companies? SpaceNews (January 22, 2013)Google Scholar
  48. Wegel, D., Nuth, J.: NASA Developing Comet Harpoon for Sample Return (2013), (accessed on January 13, 2013)
  49. Wilhite, A., Arney, D., Jones, C., Chai, P.: Evolved Human Space Exploration Architecture Using Commercial Launch/Propellant Depots. In: 63rd International Astronautical Congress, Naples, Italy, October 1-5 (2012)Google Scholar
  50. Yano, H., Hasegawa, S., Abe, M., Fujiwara, A.: Asteroidal surface sampling by the MUSES-C spacecraft. In: Proceedings of Asteroids, Comets, Meteors, pp. 103–106 (2002)Google Scholar
  51. Zacny, K., Chu, P., Avanesyan, A., Osborne, L., Paulsen, G., Craft, J.: Mobile. In situ Water Extractor for Mars, Moon, and Asteroid. In situ Resource Utilization. AIAA Space 2012, Pasadena, CA, September 11-13 (2012)Google Scholar
  52. Zacny, K., Huang, K., McGehee, M., Neugebauer, A., Park, S., Quayle, M., Sichel, R., Cooper, G.: Lunar soil extraction using flow of gas. In: Proceedings of the Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) Conference, Cocoa Beach, FL, April 28-May 1 (2004)Google Scholar
  53. Zacny, K., Paulsen, G., Szczesiak, M., Craft, J., Chu, P., McKay, C., Glass, B., Davila, A., Marinova, M., Pollard, W., Jackson, W.: LunarVader: Development and Testing of a Lunar Drill in a Vacuum Chamber and in the Lunar Analog Site of the Antarctica. J. Aerosp. Eng. (2013), doi:10.1061/(ASCE)AS.1943-5525.0000212Google Scholar
  54. Zacny, K., Bar-Cohen, Y., Brennan, M., Briggs, G., Cooper, G., Davis, K., Dolgin, B., Glaser, D., Glass, B., Gorevan, S., Guerrero, J., McKay, C., Paulsen, G., Stanley, S., Stoker, C.: Drilling Systems for Extraterrestrial Subsurface Exploration. Astrobiology Journal 8, 665–706 (2008)CrossRefGoogle Scholar
  55. Zacny, K., et al.: Pneumatic Excavator and Regolith Transport System for Lunar ISRU and Construction. Paper 2008-7824, AIAA Space 2008 (2008)Google Scholar
  56. Zacny, K., et al.: Investigating the Efficiency of Pneumatic Transfer of JSC-1a Lunar Regolith Simulant in Vacuum and Lunar Gravity During Parabolic Flights. AIAA Space 2010 (2010)Google Scholar
  57. Zacny, K., Beegle, L., Onstott, T., Mueller, R.: MarsVac: Actuator free Regolith Sample Return Mission from Mars. Abstract 4263, Concepts and Approaches for Mars Exploration, Houston, TX, June 12-14 (2012)Google Scholar
  58. Zacny, K., Mueller, R., Galloway, G., Craft, J., Mungas, G., Hedlund, M., Fink, P.: Novel Approaches to Drilling and Excavation on the Moon. AIAA-2009-6431, AIAA Space, Conference and Exposition, Pasadena, CA, September 14-17 (2009)Google Scholar
  59. Zacny, K., Mueller, R., Paulsen, G., Chu, P., Craft, J.: The Ultimate Lunar Prospecting Rover Utilizing a Drill, Pneumatic and Percussive Excavator, and the Gas Jet Trencher. AIAA Space 2012, Pasadena, CA, September 11-13 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Honeybee RoboticsPasadenaUSA
  2. 2.NASA Jet Propulsion LaboratoryPasadenaUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Kennedy Space CenterTitusvilleUSA
  5. 5.Cadtrak EngineeringSan AnslemoUSA

Personalised recommendations