Asteroids pp 271-286 | Cite as

Rubble-Pile Near Earth Objects: Insights from Granular Physics



Most Near Earth Objects (NEOs) are composed of fractured rock, sometimes highly fractured and porous, and they have come to be known as rubble piles (Britt 2001; Fujiwara et al. 2006). The constituent particles, ranging from millimeters up to tens of meters, are weakly held together as an aggregate by a combination of both gravitational and van der Waals forces, which can be of comparable strength (Scheers et al. 2010). Future missions to these rubble NEOs, whether human or robotic, will need to operate in such a way that they can safely and successfully probe a fragile object. Of key importance is the ability to predict and control the circumstances under which the NEO material will remain intact or become unstable during activities such as digging, sample-collection, anchoring, or lift-off.


Granular Material Granular Medium Granular Flow Physical Review Letter Force Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, R., Pfeifer, M.A., Barabási, A., Schiffer, P.: Slow Drag in a Granular Medium. Physical Review Letters 82(1), 205–208 (1999)CrossRefGoogle Scholar
  2. Asphaug, F., Ostro, S.J., Hudson, R.S.: Disruption of kilometre-sized asteroids by energetic collisions. Nature 393, 437–440 (1998)CrossRefGoogle Scholar
  3. Azéma, E., Radjaï, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Physical Review E 81(5), 1–17 (2010)CrossRefGoogle Scholar
  4. Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Physical Review E 85(3), 1–12 (2012)CrossRefGoogle Scholar
  5. Baer, J., Chesley, S.R., Matson, R.D.: Astrometric Masses of 26 Asteroids and Observations on Asteroid Porosity. The Astronomical Journal 141(5), 143 (2011)CrossRefGoogle Scholar
  6. Baran, O., Kondic, L.: On velocity profiles and stresses in sheared and vibrated granular systems under variable gravity. Physics of Fluids 18(12), 121509 (2006)CrossRefGoogle Scholar
  7. Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480(7377), 355–358 (2011)CrossRefGoogle Scholar
  8. Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)zbMATHCrossRefGoogle Scholar
  9. Britt, D.: Modeling the Structure of High Porosity Asteroids. Icarus 152(1), 134–139 (2001)CrossRefGoogle Scholar
  10. Campbell, C.S.: Stress-controlled Elastic Granular Shear Flows. Journal of Fluid Mechanics 539, 273–297 (2005)zbMATHCrossRefGoogle Scholar
  11. Cates, M.E., Wittmer, J.P., Bouchaud, J.P., Claudin, P.: Jamming, Force Chains, and Fragile Matter. Physical Review Letters 81, 1841–1844 (1998)CrossRefGoogle Scholar
  12. Chen, Y.-P., Evesque, P., Hou, M.-Y.: Breakdown of Energy Equipartition in Vibro-Fluidized Granular Media in Micro-Gravity. Chinese Physics Letters 29(7), 074501 (2012)Google Scholar
  13. Clark, A., Kondic, L., Behringer, R.: Particle Scale Dynamics in Granular Impact. Physical Review Letters 109(23), 238302 (2012)CrossRefGoogle Scholar
  14. Costantino, D., Bartell, J., Scheidler, K., Schiffer, P.: Low-velocity granular drag in reduced gravity. Physical Review E 83(1), 2009–2012 (2011)CrossRefGoogle Scholar
  15. Cundall, P.A., Strack, O.D.L.: Discrete Numerical-model for Granular Assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  16. Dagois-Bohy, S., Tighe, B., Simon, J., Henkes, S., van Hecke, M.: Soft-Sphere Packings at Finite Pressure but Unstable to Shear. Physical Review Letters 109(9), 09570 (2012)Google Scholar
  17. Daniels, K.E., Coppock, J.E., Behringer, R.P.: Dynamics of meteor impacts. Chaos 14, S4 (2004)Google Scholar
  18. Dantu, P.: Contribution l’étude méchanique et géométrique des milieux pulvérulents. In: Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, pp. 144–148 (1957)Google Scholar
  19. Donahue, C., Hrenya, C., Davis, R.: Stokes’s Cradle: Newton’s Cradle with Liquid Coating. Physical Review Letters 105(3), 034501 (2010)CrossRefGoogle Scholar
  20. Edwards, S.F., Oakeshott, R.B.S.: Theory of Powders. Physica A 157, 1080–1090 (1989)MathSciNetCrossRefGoogle Scholar
  21. Forterre, Y., Pouliquen, O.: Flows of Dense Granular Media. Annual Review of Fluid Mechanics 40, 1–24 (2008)MathSciNetCrossRefGoogle Scholar
  22. Fujiwara, A., Kawaguchi, J., Yeomans, D.K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D.J., Barnouin-Jha, O., Cheng, A.F., Demura, H., Gaskell, R.W., Hirata, N., Ikeda, H., Kominato, T., Miyamoto, H., Nakamura, A.M., Nakamura, R., Sasaki, S., Uesugi, K.: The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science 312(5778), 1330–1334 (2006)CrossRefGoogle Scholar
  23. Geng, J.F., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clement, E., Luding, S.: Footprints in Sand: The Response of a Granular Material to Local Perturbations. Physical Review Letters 8703, 35506 (2001)CrossRefGoogle Scholar
  24. Geng, J., Behringer, R.: Slow drag in two-dimensional granular media. Physical Review E 71(1), 011302 (2005)Google Scholar
  25. Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Physical Review Letters 70(11), 1619–1622 (1993)CrossRefGoogle Scholar
  26. Goldhirsch, I.: Rapid granular flows. Annual Review of Fluid Mechanics 35(1), 267–293 (2003)Google Scholar
  27. Gómez, L., Turner, A., van Hecke, M., Vitelli, V.: Shocks near Jamming. Physical Review Letters 108(5), 058001 (2012)Google Scholar
  28. Gravish, N., Franklin, S., Hu, D., Goldman, D.: Entangled Granular Media. Physical Review Letters 108(20), 208001 (2012)CrossRefGoogle Scholar
  29. Harth, K., Kornek, U., Trittel, T., Strachauer, U., Höme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Physical Review Letters 110(14), 144102 (2013)CrossRefGoogle Scholar
  30. Henkes, S., Shundyak, K., van Saarloos, W., van Hecke, M.: Local contact numbers in two-dimensional packings of frictional disks. Soft Matter 6(13), 2935–2938 (2010)CrossRefGoogle Scholar
  31. Herminghaus, S.: Dynamics of wet granular matter. Advances in Physics 54(3), 221–261 (2005)CrossRefGoogle Scholar
  32. Herrmann, H.J., Astrøm, J.A., Mahmoodi Baram, R.: Rotations in shear bands and polydisperse packings. Physica A: Statistical Mechanics and its Applications 344(3-4), 516–522 (2004)CrossRefGoogle Scholar
  33. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular Solids, Liquids, and Gases. Reviews of Modern Physics 68, 1259–1273 (1996)CrossRefGoogle Scholar
  34. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)zbMATHCrossRefGoogle Scholar
  35. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)CrossRefGoogle Scholar
  36. Kabla, A.J., Senden, T.J.: Dilatancy in Slow Granular Flows. Physical Review Letters 102(22), 228301 (2009)CrossRefGoogle Scholar
  37. Kamrin, K., Koval, G.: Nonlocal Constitutive Relation for Steady Granular Flow. Physical Review Letters 108(17), 178301 (2012)CrossRefGoogle Scholar
  38. KISS, Asteroid Retrieval Feasibility Study. Technical Report, Keck Institute for Space Studies, California Institute of Technology, Jet Propulsion Laboratory (April 2012)Google Scholar
  39. Lechenault, F., Daniels, K.E.: Equilibration of granular subsystems. Soft Matter 6(13), 3074 (2010)CrossRefGoogle Scholar
  40. Leconte, M., Garrabos, Y., Falcon, E., Lecoutre-Chabot, C., Palencia, F., Evesque, P., Beysens, D.: Microgravity experiments on vibrated granular gases in a dilute regime: non-classical statistics. Journal of Statistical Mechanics: Theory and Experiment 2006(07), P07012 (2006)Google Scholar
  41. Li, J., A’Hearn, M.F., McFadden, L.A.: Photometric analysis of Eros from NEAR data. Icarus 172(2), 415–431 (2004)CrossRefGoogle Scholar
  42. Liu, A.J., Nagel, S.R.: Nonlinear dynamics: Jamming is not just cool any more. Nature 396, 21–22 (1998)CrossRefGoogle Scholar
  43. Liu, A.J., Nagel, S.R.: The Jamming Transition and the Marginally Jammed Solid. Annual Review of Condensed Matter Physics 1(1), 347–369 (2010)CrossRefGoogle Scholar
  44. Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force Fluctuations in Bead Packs. Science 269(5223), 513–515 (1995)CrossRefGoogle Scholar
  45. Mailman, M., Schreck, C.F., O’Hern, C.S., Chakraborty, B.: Jamming in Systems Composed of Frictionless Ellipse-Shaped Particles. Physical Review Letters 102(25), 255501 (2009)CrossRefGoogle Scholar
  46. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005)CrossRefGoogle Scholar
  47. Métayer, J.-F., Suntrup III, D.J., Radin, C., Swinney, H.L., Schröter, M.: Shearing of frictional sphere packings. Europhysics Letters 93(6), 64003 (2011)CrossRefGoogle Scholar
  48. Metzger, P.T., Immer, C.D., Donahue, C.M., Vu, B.T., Latta, R.C., Deyo-Svendsen, M.: Jet-Induced Cratering of a Granular Surface with Application to Lunar Spaceports. Journal of Aerospace Engineering 22(1), 24–32 (2009)CrossRefGoogle Scholar
  49. Michikami, T., Nakamura, A.M.: Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa. Earth Planets Space 60, 13–20 (2008)Google Scholar
  50. Miyamoto, H., Yano, H., Scheeres, D.J., Abe, S., Barnouin-Jha, O., Cheng, A.F., Demura, H., Gaskell, R.W., Hirata, N., Ishiguro, M., Michikami, T., Nakamura, A.M., Nakamura, R., Saito, J., Sasaki, S.: Regolith migration and sorting on asteroid Itokawa. Science 316(5827), 1011–1014 (2007)CrossRefGoogle Scholar
  51. Murdoch, N., Rozitis, B., Nordstrom, K., Green, S.F., Michel, P., De Lophem, T., Losert, W.: Granular Convection in Microgravity. Physical Review Letters 110(1), 018307 (2013)Google Scholar
  52. Muthuswamy, M., Tordesillas, A.: How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies? Journal of Statistical Mechanics: Theory and Experiment 9 (2006)Google Scholar
  53. Nedderman, R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  54. Nowak, S., Samadani, A., Kudrolli, A.: Maximum angle of stability of a wet granular pile. Nature Physics 1(1), 50–52 (2005)CrossRefGoogle Scholar
  55. Owens, E.T., Daniels, K.E.: Acoustic measurement of a granular density of modes. Soft Matter 9(4), 1214–1219 (2013)CrossRefGoogle Scholar
  56. O’Hern, C., Silbert, L., Liu, A., Nagel, S.: Jamming at zero temperature and zero applied stress: The epitome of disorder. Physical Review E 68(1), 011306 (2003)CrossRefGoogle Scholar
  57. Peña, A.A., García-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granular Matter 9(3-4), 279–291 (2007)zbMATHCrossRefGoogle Scholar
  58. Phillips, C., Anderson, J., Huber, G., Glotzer, S.: Optimal Filling of Shapes. Physical Review Letters 108(19), 198304 (2012)CrossRefGoogle Scholar
  59. Pica Ciamarra, M.P., Lara, A.H., Lee, A.T., Goldman, D.I., Vishik, I., Swinney, H.L.: Dynamics of Drag and Force Distributions for Projectile Impact in a Granular Medium. Physical Review Letters 92(19), 194301 (2004)CrossRefGoogle Scholar
  60. Pöschel, T., Schwager, T.: Computational Granular Dynamics: Models and Algorithms. Springer, New York (2005)Google Scholar
  61. Puckett, J.G., Daniels, K.E.: Equilibrating Temperature-like Variables in Jammed Granular Subsystems. Physical Review Letters 110(5), 058001 (2013)Google Scholar
  62. Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. Philosophical Magazine 20, 469 (1885)CrossRefGoogle Scholar
  63. Richardson, D.C., Walsh, K.J., Murdoch, N., Michel, P.: Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212(1), 427–437 (2011)CrossRefGoogle Scholar
  64. Richefeu, V., El Youssoufi, M., Radjaï, F.: Shear strength properties of wet granular materials. Physical Review E 73(5), 051304 (2006)CrossRefGoogle Scholar
  65. Rickman, D., Immer, C., Metzger, P., Dixon, E., Pendleton, M., Edmunson, J.: Particle Shape in Simulants of the Lunar Regolith. Journal of Sedimentary Research 82(11), 823–832 (2012)CrossRefGoogle Scholar
  66. Ringl, C., Bringa, E.M., Bertoldi, D.S., Urbassek, H.M.: Collisions of Porous Clusters: a Granular-Mechanics Study of Compaction and Fragmentation. The Astrophysical Journal 752(2), 151 (2012)CrossRefGoogle Scholar
  67. Robinson, M.S., Thomas, P.C., Veverka, J., Murchie, S.L., Wilcox, B.B.: The geology of 433 Eros. Meteoritics & Planetary Science 37(12), 1651–1684 (2002)CrossRefGoogle Scholar
  68. Saadatfar, M., Sheppard, A.P., Senden, T.J., Kabla, A.J.: Mapping forces in a 3D elastic assembly of grains. Journal of the Mechanics and Physics of Solids 60(1), 55–66 (2012)zbMATHCrossRefGoogle Scholar
  69. Saint-Cyr, B., Szarf, K., Voivret, C., Azéma, E., Richefeu, V., Delenne, J.-Y., Combe, G., Nouguier-Lehon, C., Villard, P., Sornay, P., Chaze, M., Radjaï, F.: Particle shape dependence in 2D granular media. Europhysics Letters 98(4), 44008 (2012)CrossRefGoogle Scholar
  70. Sánchez, P., Scheeres, D.J.: Simulating Asteroid Rubble Piles With a Self-Gravitating Soft-Sphere Distinct Element Method Model. The Astrophysical Journal 727(2), 120 (2011)CrossRefGoogle Scholar
  71. Scheeres, D.J., Hartzell, C.M., Sánchez, P., Swift, M.: Scaling forces to asteroid surfaces: The role of cohesion. Icarus 210(2), 968–984 (2010)CrossRefGoogle Scholar
  72. Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)Google Scholar
  73. Schwartz, S.R., Richardson, D.C., Michel, P.: An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granular Matter 14(3), 363–380 (2012)CrossRefGoogle Scholar
  74. Somfai, E., Van Hecke, M., Ellenbroek, W.G., Shundyak, K., Van Saarloos, W.: Critical and Noncritical Jamming of Frictional Grains. Physical Review E 75(2), 20301 (2007)CrossRefGoogle Scholar
  75. Song, C., Wang, P., Makse, H.A.: A phase diagram for jammed matter. Nature 453(7195), 629–632 (2008)CrossRefGoogle Scholar
  76. Strauch, S., Herminghaus, S.: Wet granular matter: a truly complex fluid. Soft Matter 8, 8271–8280 (2012)CrossRefGoogle Scholar
  77. Torquato, S., Jiao, Y.: Organizing principles for dense packings of non-spherical hard particles: Not all shapes are created equal. Physical Review E 86(1), 011102 (2012)CrossRefGoogle Scholar
  78. Trigo-Rodriguez, J.M., Blum, J.: Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies. Planetary and Space Science 57(2), 243–249 (2009)CrossRefGoogle Scholar
  79. Tsoungui, O., Vallet, D., Charmet, J.-C., Roux, S.: Partial pressures supported by granulometric classes in polydisperse granular media. Physical Review E 57(4), 4458–4465 (1998)CrossRefGoogle Scholar
  80. Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., Kadono, T., Nakamura, T., Uesugi, K., Nakano, T., Sandford, S.A., Noguchi, R., Matsumoto, T., Matsuno, J., Nagano, T., Imai, Y., Takeuchi, A., Suzuki, Y., Ogami, T., Katagiri, J., Ebihara, M., Ireland, T.R., Kitajima, F., Nagao, K., Naraoka, H., Noguchi, T., Okazaki, R., Yurimoto, H., Zolensky, M.E., Mukai, T., Abe, M., Yada, T., Fujimura, A., Yoshikawa, M., Kawaguchi, J.: Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith. Science 333(6046), 1125–1128 (2011)CrossRefGoogle Scholar
  81. van Hecke, M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. Journal of Physics. Condensed Matter: An Institute of Physics Journal 22(3), 33101 (2010)CrossRefGoogle Scholar
  82. Vermeer, P.A., Diebels, S., Ehlers, W., Herrmann, H.J., Luding, S., Ramm, E.: Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Springer, Berlin (2001)zbMATHCrossRefGoogle Scholar
  83. Veverka, J.: NEAR at Eros: Imaging and Spectral Results. Science 289(5487), 2088–2097 (2000)CrossRefGoogle Scholar
  84. Voivret, C., Radjaï, F., Delenne, J.-Y., El Youssoufi, M.: Multiscale Force Networks in Highly Polydisperse Granular Media. Physical Review Letters 102(17), 2–5 (2009)CrossRefGoogle Scholar
  85. Wackenhut, M., McNamara, S., Herrmann, H.: Shearing Behavior of Polydisperse Media. European Physical Journal E 17(2), 237–246 (2005)CrossRefGoogle Scholar
  86. Wendell, D.: Transport in Granular Systems. Phd Thesis, Massachusetts Institute of Technology (2011)Google Scholar
  87. Wyart, M.: On the Rigidity of Amorphous Solids. Annales De Physique 30(3), 1–96 (2005)CrossRefGoogle Scholar
  88. Yano, H., Kubota, T., Miyamoto, H., Okada, T., Scheeres, D., Takagi, Y., Yoshida, K., Abe, M., Abe, S., Barnouin-Jha, O., Fujiwara, A., Hasegawa, S., Hashimoto, T., Ishiguro, M., Kato, M., Kawaguchi, J., Mukai, T., Saito, J., Sasaki, S., Yoshikawa, M.: Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa. Science 312(5778), 1350–1353 (2006)CrossRefGoogle Scholar
  89. Zeravcic, Z., Xu, N., Liu, A.J., Nagel, S.R., van Saarloos, W.: Excitations of ellipsoid packings near jamming. Europhysics Letters 87(2), 26001 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.North Carolina State UniversityRaleighUSA

Personalised recommendations