Advertisement

Asteroids pp 247-270 | Cite as

Electric Power System Options for Robotic Miners

Chapter
  • 2.9k Downloads

Abstract

Exploration and exploitation of asteroids is a technological and economical challenge envisioned and pursued by public and private organizations across the world. Space exploration is driven by science, space exploitation is in the end driven by commercial - maybe strategic - considerations. While the goals of exploration and exploitation may thus be different, the technological challenges and approaches are often very similar.

Keywords

Power System Fuel Cell System Output Power Level Stirling Engine Flow Batterie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badescu, V., Popescu, G., Feidt, M.: Model of optimized solar heat engine operating on Mars. Energy Convers. and Manage. 40, 1713–1721 (1999) Google Scholar
  2. Badescu, V., Popescu, G., Feidt, M.: Design and optimisation of a combination solar collector–thermal engine operating on Mars. Renew. Energ. 21, 1–22 (2000) Google Scholar
  3. Blanke, B.C., Birden, J.H., Jordan, K.C., Murphy, E.L.: Nuclear battery-thermocouple type summary report. United States Atomic Energy Commission Research and Development Report, US Government contract No. AT-33-1-GEN-53 (1960), http://www.osti.gov/bridge/servlets/purl/4807049-6bvOmJ/4807049.pdf
  4. Coutts, T.J.: A review of progress in thermophotovoltaic generation of electricity. Renew. Sustain. Energy Rev. 3, 77–184 (1999) Google Scholar
  5. Fraser, S.D.: Non-nuclear power system options for a mission to mars and derived terrestrial applications. Diploma thesis, Graz University of Technology (2001) Google Scholar
  6. Fraser, S.D.: Fuel cell power system options for Mars surface mission elements. In: Badescu, V. (ed.) Mars: Prospective Energy and Material Resources, pp. 139–174. Springer, Heidelberg (2009) Google Scholar
  7. Fraser, S.D.: Fuel cell power system options for lunar surface exploration applications. In: Badescu, V. (ed.) Moon: Prospective Energy and Material Resources, pp. 377–404. Springer, Heidelberg (2012) Google Scholar
  8. Garrick-Bethell, I., Carr, C.E.: Working and walking on small asteroids with circumferential ropes. Acta Astronautica 61, 1130–1135 (2007) Google Scholar
  9. Gerlach, C.L.: Profitably exploiting near-earth object resources. In: 2005 International Space Development Conference. National Space Society, Washington, DC (2005) Google Scholar
  10. Grant, I.: TVA’s Regenesys energy storage project. In: 2002 IEEE Power Engineering Society Summer Meeting. Tennessee Valley Authority, Chattanooga (2002) Google Scholar
  11. Hoffman, S.J., Kaplan, D.I. (eds.): The reference mission of the NASA Mars exploration study team. NASA Special Publication 6107 (1997) Google Scholar
  12. Houts, M., Van Dyke, M., Godfroy, T., Pedersen, K., Martin, J., Dickens, R., Salvail, P., Hrbud, I., Rodgers, S.L.: Options for development of space fission propulsion system. In: Space Technologies Applications International Forum Conference, Albuquerque, NM, United States (2001) Google Scholar
  13. Landis, R.R., Abell, P.A., Korsmeyer, D.J., Jones, T.D., Adamo, D.R.: Piloted operations at a near-Earth object (NEO). Acta Astronaut. 65, 1689–1697 (2009) Google Scholar
  14. Lewis, J.S., Hutson, M.L.: Asteroidal resource opportunities suggested by meteorite data. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 523–542. University of Arizona Press (1993) Google Scholar
  15. Lyons, V.J., Gonzalez, G.A., Houts, M.G., Iannello, C.J., Scott, J.H., Surampudi, S.: DRAFT Space Power and Energy Storage Road map (2010), http://www.nasa.gov/pdf/501328main_TA03-SpacePowerStorage-DRAFT-Nov2010-A.pdf
  16. Matloff, G.L., Wilga, M.: NEOs as stepping stones to Mars and main-belt asteroids. Acta Astronautica 68, 599–602 (2011) Google Scholar
  17. Mason, L.S.: A solar dynamic power option for space solar power. In: 34th Intersociety Energy Conversion Engineering Conference, Vancouver, British Columbia, Canada (1999) Google Scholar
  18. Nelson, M.L., Britt, D.T., Lebofsky, L.A.: Review of asteroid compositions. In: Lewis, J.S., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 493–522. University of Arizona Press (1993) Google Scholar
  19. NASA NEO Discovery Statistics (2012), http://neo.jpl.nasa.gov/stats/
  20. NASA Fission surface power (2010), http://www.grc.nasa.gov/WWW/TECB/fsp.htm
  21. NASA FSP Handout, Fission Surface Power System Technology for NASA Exploration Missions (2010), http://www.grc.nasa.gov/WWW/TECB/FSP_Handout.pdf
  22. NASA Mars Science Laboratory Curiosity Rover (2012), http://mars.jpl.nasa.gov/msl/mission/rover/
  23. NASA Photojournal, PIA00069: Ida and Dactyl in Enhanced Color (1996), http://photojournal.jpl.nasa.gov/catalog/?IDNumber=PIA00069
  24. Popoli, T., Besenhard, J.O., Schautz, M.: In situ production of fuel and oxidant for a small solid oxide fuel cell on Mars. In: Wilson, A. (ed.) Space Power, Proceedings of the Sixth European Conference (2002)Google Scholar
  25. Reddy, M.R.: Space solar cells - tradeoff analysis. Sol. Energ. Mat. Sol. C 77, 175–208 (2003)CrossRefGoogle Scholar
  26. Ross, S.D.: Near-earth asteroid mining. Caltech Internal Report (2001), http://www.nss.org/settlement/asteroids/NearEarthAsteroidMining%28Ross2001%29.pdf
  27. Sanchez, J.P., McInnes, C.R.: Assessment on the feasibility of future shepherding of asteroid resources. Acta Astronaut. 73, 49–66 (2012)CrossRefGoogle Scholar
  28. Sanchez, J.P., McInnes, C.R.: Synergistic approach of asteroid exploitation and plane-tary protection. Adv. Space Res. 49, 667–685 (2012)CrossRefGoogle Scholar
  29. Schock, A., Noravian, H., Or, C., Kumar, V.: Design, analyses, and fabrication procedure of Amtec cell, test assembly, and radioisotope power system for outer-planet missions. Acta Astronaut. 50, 471–510 (2002)CrossRefGoogle Scholar
  30. Summerer, L., Stephenson, K.: Nuclear power sources: a key enabling technology for planetary exploration. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 225, 129–143 (2011)CrossRefGoogle Scholar
  31. Surampudi, S.: Overview of the space power conversion and energy storage technologies (2011), http://www.lpi.usra.edu/sbag/meetings/jan2011/presentations/day1/d1_1200_Surampudi.pdf
  32. Tournier, J.-M., El-Genk, N.: Performance analysis of Pluto/Express, multitube AMTEC cells. Energ. Convers. Manage. 40, 139–173 (1999)CrossRefGoogle Scholar
  33. World Nuclear Association, Nuclear reactors for space (2012), http://www.world-nuclear.org/info/inf82.html
  34. Zubrin, R., Wagner, R.: The case for Mars: the plan to settle the red planet and why we must. Touchstone, New York (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graz University of TechnologyGrazAustria

Personalised recommendations