Development and Evaluation of a Knowledge-Based Method for the Treatment of Use-Oriented and Technical Risks Using the Example of Medical Devices

  • Simon Plogmann
  • Armin Janß
  • Arne Jansen-Troy
  • Klaus Radermacher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8013)


Rapidly evolving technological progress in the field of medical devices not only leads to a potential enhancement of therapeutic results but also to a change of the Human-Machine-Interaction characteristics, causing deficiencies in the use process and bringing along high potential for hazardous human-induced failures. This implicates higher risks for patients, medical professionals and third parties. In order to support the usability engineering and risk management process of medical devices, a new methodology for risk control has been developed and evaluated. The aim is to implement appropriate counteractions in the risk control process, reducing errors in the Human-Machine-Interaction process as well as system-inherent technological risks. Accessing information from the method’s knowledge base enables the operator to detect the most suitable countermeasures for the respective problem. 41 approved generic countermeasure principles have been indexed as a resulting combination of root causes and failures that might appear during Human-Machine-Interaction or manufacturing and developmental process. The method has been tested in comparison to conventional approaches. Evaluation of the matrix and reassessment of the risk priority numbers by a blind expert demonstrated a substantial benefit of the new mAIXcontrol method.


Human Error Taxonomy Usability Engineering Human-Machine-Interaction Risk Control Human Factors in Risk Management System Safety Theory of Inventive Problem Solving (TRIZ) Healthcare/Medical Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reason, J.: Human Error. Cambridge University Press (1990)Google Scholar
  2. 2.
    Kohn, K.T., Corrigan, J.M., Donaldson, M.: To Err Is Human: Building a Safer Health System. National Academy Press, Washington, DC (1999)Google Scholar
  3. 3.
    Rasmussen, J.: Skills, rules, knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Transactions on Systems, Man and Cybernetics 13, 257–266 (1983)CrossRefGoogle Scholar
  4. 4.
    Norman, D.A.: The Design of Everyday Things. Doubleday/Currency, New York (1983)Google Scholar
  5. 5.
    Hollnagel, E.: Reliability and safety analysis: Context and control. Reliability Engineering & System Safety 52(3), 327–337 (1996)CrossRefGoogle Scholar
  6. 6.
    Sutcliffe, A., Rugg, G.: A Taxonomy of Error Types for Failure Analysis and Risk Assessment. International Journal of Human-Computer Interaction 10(4), 381–405 (1998)CrossRefGoogle Scholar
  7. 7.
    Gadd, K.: TRIZ for Engineers; enabling inventive problem solving. A John Wiley and Sons, Ltd., Publication, Wiley (2011)CrossRefGoogle Scholar
  8. 8.
    DIN EN 62366: Medical devices - Application of usability engineering to medical devices (IEC 62366:2007); German version EN 62366:2008, VDE VERLAG GMBH, 10625 Berlin (2008)Google Scholar
  9. 9.
    DIN EN ISO 13485: Medical devices. Quality management systems. Requirements for regulatory purposes (ISO 13485:2003); German version EN ISO 13485:2003, BeuthVerlag GmbH, 10772 Berlin (2003)Google Scholar
  10. 10.
    DIN EN 14971: Medical devices - Application of risk management to medical devices (ISO 14971:2000); German version EN ISO 14971:2001, BeuthVerlag GmbH, 10772 Berlin (2000)Google Scholar
  11. 11.
    DIN EN 60601-1-6: Medical electrical equipment – part 1-6: general requirements for basic safety and essential performance – collateral standard: usability (60601-1-6:2007); VDE VERLAG GMBH, 10625 Berlin (2007)Google Scholar
  12. 12.
    DIN EN ISO 9241-110: Ergonomics of human-system interaction – Part 110: Dialogue principles (ISO 9241-110:2006); German version EN ISO 9241-110:2006, BeuthVerlag GmbH, 10772 Berlin (2006)Google Scholar
  13. 13.
    van der Peijl, J., Klein, J., Grass, C., Freudenthal, A.: Design for risk control: The role of usability engineering in the management of use-related risks. J. Biomed. Inform (2012)Google Scholar
  14. 14.
    Käppler, W.D.: Menschliche Fehler als Unfallursachen: Untersuchungen und Ergebnisse mit ARIADNE. In: Grandt, M. (ed.) Verlässlichkeit der Mensch Maschine-Interaktion: Deutsche Gesellschaft für Luft- und Raumfahrt e. V. Report 04-03, Bonn, S, pp. 197–212 (2004)Google Scholar
  15. 15.
    Rasmussen, J.: Reasons, causes and human errors. In: Rasmussen, J., Duncan, K., Leplar, J. (eds.) A New technology and human error, pp. 53–61. Wiley, Chichester (1987)Google Scholar
  16. 16.
    CARAD: Computer Aided Risk Analysis and Documentation, A Softwaretool for Risk Analysis and Documentation; SurgiTAIX AG (2012),
  17. 17.
    VDI 4006-2: Menschliche Zuverlässigkeit, Methoden zur quantitativen Bewertung menschlicher Zuverlässigkeit, VDI 4006-Teil2“ Zu beziehen durch / Available from Beuth Verlag GmbH, 10772 Berlin (2003)Google Scholar
  18. 18.
    Janß, A., Lauer, W., Radermacher, K.: A New Model-based Approach for the User Interface Design of Medical Devices and Systems. In: Duffy, V.G. (ed.) Advances in Human Factors and Ergonomics in Healthcare, pp. 499–508. CRC Press -Taylor and Francis Group (2010)Google Scholar
  19. 19.
    Janß, A., Lauer, W., ChuembouPekam, F., Radermacher, K.: Using New Model-Based Techniques for the User Interface Design of Medical Devices and Systems. In: Roecker, C., Ziefle, M. (eds.) Human Centered Design of E-Health Technologies: Concepts, Methods and Applications, pp. 234–251. IGI Global, Hershey (2011)Google Scholar
  20. 20.
    Portheine, F., Ohnsorge, J.A.K., Schkommodau, E., Radermacher, K.: CT-Based Planning and Individual Template Navigation in TKA. In: Stiehl, J.B., Konermann, W.H., Haaker, R.G. (eds.) Navigation and Robotics in Total Joint and Spine Surgery, pp. 336–342. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simon Plogmann
    • 1
  • Armin Janß
    • 1
  • Arne Jansen-Troy
    • 1
  • Klaus Radermacher
    • 1
  1. 1.Helmholtz-Institute for Biomedical Engineering AachenAachen UniversityAachenGermany

Personalised recommendations