Remote Usability Evaluation Using Eye Tracking Enhanced with Intelligent Data Analysis

  • Piotr Chynał
  • Janusz Sobecki
  • Jerzy M. Szymański
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8012)


In this paper we present a new cost-effective method for usability evaluation using eye tracking enhanced with intelligent data analysis. In this method we propose application of a low-cost infrared camera and free Ogama software. Moreover we present how the standard data analysis, which is usually made manually by experts, may be enhanced by application of intelligent data analysis. We applied well known expert system, which is using fuzzy reasoning. To build such a system we should first define a model of “desired” eye tracking record for a given poster, or more general web page or the whole application.


Usability Eye Tracking Human Computer-Interaction Fuzzy Expert Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burke, R.R., Rangaswamy, A., Sunil, G.: Rethinking Marketing Research in the Digital World. eBusiness Researcher Center Working Paper 01, 13 (1999)Google Scholar
  2. 2.
    Krueger, R.A., Casey, M.A.: Focus groups: A practical guide for applied research, pp. 107–113. Sage, Thousand Oaks (1999)Google Scholar
  3. 3.
    Moyle, K.: Focus groups in educational research: using ICT to assist in meaningful data collection. MOY06634, 1–3 (2006)Google Scholar
  4. 4.
    Duchowski, A.T.: A Breadth-First Survey of Eye Tracking Applications,
  5. 5.
    Duchowski, A.T.: Eye tracking methodology: Theory and practice, pp. 205–300. Springer-Verlag Ltd., London (2003)CrossRefGoogle Scholar
  6. 6.
    Goldberg, H.J., Wichansky, A.M.: Eye tracking in usability evaluation: A practitioner’s guide. Elsevier, Amsterdam (2003)Google Scholar
  7. 7.
    Chynał, P., Sobecki, J.: Comparison and analysis of the eye pointing methods and applications. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 30–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Chynał, P., Szymański, J.M.: Remote Usability Testing Using Eye tracking. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part I. LNCS, vol. 6946, pp. 356–361. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    San Agustin, J., Skovsgaard, H., Mollenbach, E., Barret, M., Tall, M., Hansen, D.W., Hansen, J.P.: Evaluation of a low-cost open-source gaze tracker. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA 2010, Austin, Texas, March 22 - 24, pp. 77–80. ACM, New York (2010)CrossRefGoogle Scholar
  10. 10.
    San Agustin, J., Skovsgaard, H., Hansen, J.P., Hansen, D.W.: Low-cost gaze interaction: ready to deliver the promises. In: Proceedings of the 27th International Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2009, Boston, MA, USA, pp. 4453–4458. ACM, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Rayner, K., Rotello, C.M., Stewart, A.J.: Integrating text and pictorial information: eye movements when looking at print advertisements. Journal of Experimental Psychology: Applied 7(3), 219–226 (2001)CrossRefGoogle Scholar
  12. 12.
    Rayner, K., Miller, B., Rotello, C.M.: Eye Movements When Looking at Print Advertisements: The Goal of the Viewer Matters. Appl. Cogn. Psychol. 22(5), 697–707 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, M., Song, Y., Lu, S., Zhong, N.: The Layout of Web Pages: A Study on the Relation between Information Forms and Locations Using Eye-Tracking. In: Liu, J., Wu, J., Yao, Y., Nishida, T. (eds.) AMT 2009. LNCS, vol. 5820, pp. 207–216. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Nielsen, J., Pernice, K.: Eyetracking Web Usability. Pearson, Berkeley (2010)Google Scholar
  15. 15.
    Jakob, N.: F-Shaped Pattern For Reading Web Content. Jakob Nielsen’s Alertbox (2006),
  16. 16.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A computational approach to learning and machine intelligence. Matlab Curriculum Series. Prentice Hall (1997)Google Scholar
  17. 17.
    Sobecki, J., Babiak, E., Słanina, M.: Application of Hybrid Recommendation in Web-Based Cooking Assistant. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 797–804. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Akerkar, R., Sajja, P.: Knowledge-Based Systems. Jones & Bartlett Learning (2010)Google Scholar
  19. 19.
    Guillaume, S.: Designing Fuzzy Inference Systems from Data: An Interpretability-Oriented Review. IEEE Transactions on Fuzzy Systems 9(3), 426–443 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Piotr Chynał
    • 1
  • Janusz Sobecki
    • 1
  • Jerzy M. Szymański
    • 1
  1. 1.Wrocław University of TechnologyPoland

Personalised recommendations