Skip to main content

Fast Collaborative Graph Exploration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7966))

Abstract

We study the following scenario of online graph exploration. A team of k agents is initially located at a distinguished vertex r of an undirected graph. At every time step, each agent can traverse an edge of the graph. All vertices have unique identifiers, and upon entering a vertex, an agent obtains the list of identifiers of all its neighbors. We ask how many time steps are required to complete exploration, i.e., to make sure that every vertex has been visited by some agent.

We consider two communication models: one in which all agents have global knowledge of the state of the exploration, and one in which agents may only exchange information when simultaneously located at the same vertex. As our main result, we provide the first strategy which performs exploration of a graph with n vertices at a distance of at most D from r in time O(D), using a team of agents of polynomial size k = D n 1 + ε < n 2 + ε, for any ε > 0. Our strategy works in the local communication model, without knowledge of global parameters such as n or D.

We also obtain almost-tight bounds on the asymptotic relation between exploration time and team size, for large k. For any constant c > 1, we show that in the global communication model, a team of k = D n c agents can always complete exploration in \(D(1+ \frac{1}{c-1} +o(1))\) time steps, whereas at least \(D(1+ \frac{1}{c} -o(1))\) steps are sometimes required. In the local communication model, \(D(1+ \frac{2}{c-1} +o(1))\) steps always suffice to complete exploration, and at least \(D(1+ \frac{2}{c} -o(1))\) steps are sometimes required. This shows a clear separation between the global and local communication models.

This work was initiated while A. Kosowski was visiting Y. Disser at ETH Zurich. Supported by ANR project DISPLEXITY and by NCN under contract DEC-2011/02/A/ST6/00201. The authors are grateful to Shantanu Das for valuable discussions and comments on the manuscript. The full version of this paper is available online at: http://hal.inria.fr/hal-00802308 .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Information and Computation 152(2), 155–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. IEEE Transactions on Robotics 27(4), 707–717 (2011)

    Article  Google Scholar 

  3. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Worst-case optimal exploration of terrains with obstacles. Information and Computation 225, 16–28 (2013)

    Article  MathSciNet  Google Scholar 

  4. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Transactions on Algorithms 2(3), 380–402 (2006)

    Article  MathSciNet  Google Scholar 

  5. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Dynia, M., Kutyłowski, J., Meyer auf der Heide, F., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM Journal on Computing 7(2), 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  10. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environments by a mobile robot. Computational Geometry 24(3), 197–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herrmann, D., Kamphans, T., Langetepe, E.: Exploring simple triangular and hexagonal grid polygons online. CoRR, abs/1012.5253 (2010)

    Google Scholar 

  12. Higashikawa, Y., Katoh, N.: Online exploration of all vertices in a simple polygon. In: Proc. 6th Frontiers in Algorithmics Workshop and the 8th Int. Conf. on Algorithmic Aspects of Information and Management (FAW-AAIM), pp. 315–326 (2012)

    Google Scholar 

  13. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.-I.: Online graph exploration algorithms for cycles and trees by multiple searchers. Journal of Combinatorial Optimization (2013)

    Google Scholar 

  14. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: Exploring an unknown cellular environment. In: Proc. 16th European Workshop on Computational Geometry (EuroCG), pp. 140–143 (2000)

    Google Scholar 

  15. Kolenderska, A., Kosowski, A., Małafiejski, M., Żyliński, P.: An improved strategy for exploring a grid polygon. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 222–236. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Łopuszański, J.: Tree exploration. Tech-report, Institute of Computer Science, University of Wrocław, Poland (2007) (in Polish)

    Google Scholar 

  17. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proc. 24th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 27–36 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P. (2013). Fast Collaborative Graph Exploration. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39212-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39212-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39211-5

  • Online ISBN: 978-3-642-39212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics