Skip to main content

Search-Space Size in Contraction Hierarchies

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7965)

Abstract

Contraction hierarchies are a speed-up technique to improve the performance of shortest-path computations, which works very well in practice. Despite convincing practical results, there is still a lack of theoretical explanation for this behavior.

In this paper, we develop a theoretical framework for studying search space sizes in contraction hierarchies. We prove the first bounds on the size of search spaces that depend solely on structural parameters of the input graph, that is, they are independent of the edge lengths. To achieve this, we establish a connection with the well-studied elimination game. Our bounds apply to graphs with treewidth k, and to any minor-closed class of graphs that admits small separators. For trees, we show that the maximum search space size can be minimized efficiently, and the average size can be approximated efficiently within a factor of 2.

We show that, under a worst-case assumption on the edge lengths, our bounds are comparable to the recent results of Abraham et al. [1], whose analysis depends also on the edge lengths. As a side result, we link their notion of highway dimension (a parameter that is conjectured to be small, but is unknown for all practical instances) with the notion of pathwidth. This is the first relation of highway dimension with a well-known graph parameter.

Keywords

  • Search Space
  • Edge Length
  • Undirected Graph
  • Elimination Tree
  • Supporting Vertex

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39206-1_9
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39206-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-Dimension and Shortest Path Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  2. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: Proc. 21st Annual ACM–SIAM Symp. Disc. Alg. (SODA 2010), pp. 782–793. SIAM (2010)

    Google Scholar 

  3. Bauer, R., Baum, M., Rutter, I., Wagner, D.: On the Complexity of Partitioning Graphs for Arc-Flags. In: Proc. 12th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2012). OpenAccess Series in Informatics (OASIcs), pp. 71–82 (2012)

    Google Scholar 

  4. Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing Speed-Up Techniques Is Hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 359–370. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  5. Bodlaender, H.L., Gilbert, J.R., Kloks, T., Hafsteinsson, H.: Approximating treewidth, pathwidth, and minimum elimination tree height. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 1–12. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  6. Fakcharoenphol, J., Rao, S.: Negative weight edges, shortest paths, near linear time. In: Proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS 2001), pp. 232–241 (2001)

    Google Scholar 

  7. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transport. Sci. 46(3), 388–404 (2012)

    CrossRef  Google Scholar 

  8. George, A.: Nested dissection of a regular finite element mesh. SIAM Journal on Numerical Analysis 10(2), 345–363 (1973)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Gilbert, J.R., Tarjan, R.E.: The analysis of a nested dissection algorithm. Numerische Mathematik 50(4), 377–404 (1986)

    MathSciNet  CrossRef  Google Scholar 

  10. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathematics 306(3), 297–317 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Milosavljević, N.: On optimal preprocessing for contraction hierarchies. In: Proc. 5th Internat. Workshop Comput. Transport. Sci., IWCTS 2012 (2012)

    Google Scholar 

  12. Parter, S.V.: The use of linear graphs in gaussian elimination. SIAM Review 3(2), 119–130 (1961)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Rose, D.J., Tarjan, R.E.: Algorithmic aspects of vertex elimination on directed graphs. SIAM Journal on Applied Mathematics 34(1), 176–197 (1978)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Schäffer, A.A.: Optimal node ranking of trees in linear time. Information Processing Letters 33(2), 91–96 (1989)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Schreiber, R.: A new implementation of sparse Gaussian elimination. ACM Transactions on Mathematical Software (TOMS) 8(3), 256–276 (1982)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  17. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993–1024 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauer, R., Columbus, T., Rutter, I., Wagner, D. (2013). Search-Space Size in Contraction Hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)