Skip to main content

Dual Techniques for Scheduling on a Machine with Varying Speed

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

We study scheduling problems on a machine of varying speed. Assuming a known speed function (given through an oracle) we ask for a cost-efficient scheduling solution. Our main result is a PTAS for minimizing the total weighted completion time on a machine of varying speed. This implies also a PTAS for the closely related problem of scheduling to minimize generalized global cost functions. The key to our results is a re-interpretation of the problem within the well-known two-dimensional Gantt chart: instead of the standard approach of scheduling in the time-dimension, we construct scheduling solutions in the weight-dimension.

We also consider a dynamic problem variant in which deciding upon the speed is part of the scheduling problem and we are interested in the tradeoff between scheduling cost and speed-scaling cost, which is typically the energy consumption. We obtain two insightful results: (1) the optimal scheduling order is independent of the energy consumption and (2) the problem can be reduced to the setting where the speed of the machine is fixed, and thus admits a PTAS.

Supported by the German Science Foundation (DFG) under contract ME 3825/1, by FONDECYT grant 3130407, and by Nucleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: Proc. of FOCS, pp. 32–43 (1999)

    Google Scholar 

  2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)

    Article  MathSciNet  Google Scholar 

  3. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms 3 (2007)

    Google Scholar 

  4. Angel, E., Bampis, E., Kacem, F.: Energy aware scheduling for unrelated parallel machines. In: Proc. of GreenCom, pp. 533–540 (2012)

    Google Scholar 

  5. Bansal, N., Pruhs, K.: The geometry of scheduling. In: Proc. of FOCS, pp. 407–414 (2010)

    Google Scholar 

  6. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. SIAM J. Comput. 39(4), 1294–1308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrasco, R.A., Iyengar, G., Stein, C.: Energy aware scheduling for weighted completion time and weighted tardiness. arXiv:1110.0685 (2011)

    Google Scholar 

  8. Chan, S.-H., Lam, T.-W., Lee, L.-K.: Non-clairvoyant speed scaling for weighted flow time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 23–35. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for average completion time scheduling. SIAM J. Comput. 31(1), 146–166 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheung, M., Shmoys, D.B.: A primal-dual approximation algorithm for min-sum single-machine scheduling problems. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 135–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Eastman, W.L., Even, S., Isaacs, I.M.: Bounds for the optimal scheduling of n jobs on m processors. Management Sci. 11(2), 268–279 (1964)

    Article  MathSciNet  Google Scholar 

  12. Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M., Stougie, L.: Universal sequencing on a single machine. SIAM J. Comp. 41(3), 565–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goemans, M.X., Williamson, D.P.: Two-dimensional Gantt charts and a scheduling algorithm of Lawler. SIAM J. Disc. Math. 13, 281–294 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Höhn, W., Jacobs, T.: On the performance of Smith’s rule in single-machine scheduling with nonlinear cost. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 482–493. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News 36(2), 63–76 (2005)

    Article  Google Scholar 

  16. Kacem, I., Mahjoub, A.: Fully polynomial time approximation scheme for the weighted flow-time minimization on a single machine with a fixed non-availability interval. Computers & Industrial Engineering 56(4), 1708–1712 (2009)

    Article  Google Scholar 

  17. Kellerer, H., Strusevich, V.: Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications. Algorithmica 57(4), 769–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, C.-Y.: Machine scheduling with availability constraints. In: Leung, J.-T. (ed.) Handbook of Scheduling. CRC Press (2004)

    Google Scholar 

  19. Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your erg. ACM Transactions on Algorithms 4(3) (2008)

    Google Scholar 

  20. Stiller, S., Wiese, A.: Increasing speed scheduling and flow scheduling. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 279–290. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Vásquez, O.C.: Energy in computing systems with speed scaling: optimization and mechanisms design. arXiv:1212.6375 (2012)

    Google Scholar 

  22. Wang, G., Sun, H., Chu, C.: Preemptive scheduling with availability constraints to minimize total weighted completion times. Ann. Oper. Res. 133, 183–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. of FOCS, pp. 374–382 (1995)

    Google Scholar 

  24. Yuan, J.: The NP-hardness of the single machine common due date weighted tardiness problem. Systems Science and Mathematical Sciences 5(4), 328–333 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Megow, N., Verschae, J. (2013). Dual Techniques for Scheduling on a Machine with Varying Speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics