Skip to main content

On Model-Based RIP-1 Matrices

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

The Restricted Isometry Property (RIP) is a fundamental property of a matrix enabling sparse recovery [5]. Informally, an m ×n matrix satisfies RIP of order k in the ℓ p norm if ∥ Ax ∥  p  ≈ ∥ x ∥  p for any vector x that is k-sparse, i.e., that has at most k non-zeros. The minimal number of rows m necessary for the property to hold has been extensively investigated, and tight bounds are known. Motivated by signal processing models, a recent work of Baraniuk et al [3] has generalized this notion to the case where the support of x must belong to a given model, i.e., a given family of supports. This more general notion is much less understood, especially for norms other than ℓ2.

In this paper we present tight bounds for the model-based RIP property in the ℓ1 norm. Our bounds hold for the two most frequently investigated models: tree-sparsity and block-sparsity. We also show implications of our results to sparse recovery problems.

The full version of this paper is available at http://arxiv.org/abs/1304.3604

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Open problems in data streams, property testing, and related topics (2011), http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf

  2. Ba, K.D., Indyk, P., Price, E., Woodruff, D.P.: Lower Bounds for Sparse Recovery. In: SODA, pp. 1190–1197 (2010)

    Google Scholar 

  3. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Transactions on Information Theory 56(4), 1982–2001 (2010)

    Article  MathSciNet  Google Scholar 

  4. Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H.J., Strauss, M.J.: Combining geometry and combinatorics: A unified approach to sparse signal recovery. Allerton (2008)

    Google Scholar 

  5. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  7. Eldar, Y., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inform. Theory 55(11), 5302–5316 (2009)

    Article  MathSciNet  Google Scholar 

  8. Foucart, S., Pajor, A., Rauhut, H., Ullrich, T.: The Gelfand widths of lp-balls for 0 p ≤ 1. J. Complex. 26(6), 629–640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garnaev, A.Y., Gluskin, E.D.: On widths of the Euclidean ball. Sov. Math. Dokl. 30, 200–204 (1984)

    MATH  Google Scholar 

  10. Gilbert, A., Indyk, P.: Sparse recovery using sparse matrices. Proceedings of IEEE (2010)

    Google Scholar 

  11. Gluskin, E.D.: Norms of random matrices and widths of finite-dimensional sets. Math. USSR, Sb. 48, 173–182 (1984)

    Article  MATH  Google Scholar 

  12. Indyk, P., Price, E.: K-median clustering, model-based compressive sensing, and sparse recovery for earth mover distance. In: STOC, pp. 627–636 (2011)

    Google Scholar 

  13. Kasin, B.S.: Diameters of some finite-dimensional sets and classes of smooth functions. Math. USSR, Izv. 11, 317–333 (1977)

    Article  MATH  Google Scholar 

  14. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2), 117–236 (2005)

    Article  MathSciNet  Google Scholar 

  15. Nachin, M.: Lower Bounds on the Column Sparsity of Sparse Recovery Matrices. MIT Undergraduate Thesis (2010)

    Google Scholar 

  16. Romberg, J., Choi, H., Baraniuk, R.: Bayesian tree-structured image modeling using wavelet-domain Hidden Markov Models. 10(7), 1056–1068 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Indyk, P., Razenshteyn, I. (2013). On Model-Based RIP-1 Matrices. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics