Skip to main content

Dual Lower Bounds for Approximate Degree and Markov-Bernstein Inequalities

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

The ε-approximate degree of a Boolean function f: { − 1, 1}n → { − 1, 1} is the minimum degree of a real polynomial that approximates f to within ε in the ℓ ∞  norm. We prove several lower bounds on this important complexity measure by explicitly constructing solutions to the dual of an appropriate linear program. Our first result resolves the ε-approximate degree of the two-level AND-OR tree for any constant ε > 0. We show that this quantity is \(\Theta(\sqrt{n})\), closing a line of incrementally larger lower bounds [3,11,21,30,32]. The same lower bound was recently obtained independently by Sherstov using related techniques [25]. Our second result gives an explicit dual polynomial that witnesses a tight lower bound for the approximate degree of any symmetric Boolean function, addressing a question of Špalek [34]. Our final contribution is to reprove several Markov-type inequalities from approximation theory by constructing explicit dual solutions to natural linear programs. These inequalities underly the proofs of many of the best-known approximate degree lower bounds, and have important uses throughout theoretical computer science.

The full version of this paper is available at http://arxiv.org/abs/1302.6191

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: The polynomial method in quantum and classical computing. In: Proc. of Foundations of Computer Science (FOCS), p. 3 (2008), Slides available at http://www.scottaaronson.com/talks/polymeth.ppt

  2. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. Journal of the ACM 51(4), 595–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: Collision and element distinctness with small range. Theory of Computing 1(1), 37–46 (2005)

    Article  MathSciNet  Google Scholar 

  4. Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness. Electronic Colloquium on Computational Complexity (ECCC) 15(002) (2008)

    Google Scholar 

  5. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bound by polynomials. Journal of the ACM 48(4), 778–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beame, P., Machmouchi, W.: The quantum query complexity of AC0. Quantum Information & Computation 12(7-8), 670–676 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Beigel, R.: The polynomial method in circuit complexity. In: Proc. of the Conference on Structure in Complexity Theory, pp. 82–95 (1993)

    Google Scholar 

  8. Beigel, R.: Perceptrons, PP, and the polynomial hierarchy. In: Computational Complexity, vol. 4, pp. 339–349 (1994)

    Google Scholar 

  9. Bernstein, S.N.: On the V. A. Markov theorem. Trudy Leningr. Industr. In-ta, no 5, razdel fiz-matem nauk, 1 (1938)

    Google Scholar 

  10. Buhrman, H., Vereshchagin, N.K., de Wolf, R.: On computation and communication with small bias. In: Proc. of the Conference on Computational Complexity, pp. 24–32 (2007)

    Google Scholar 

  11. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Gavinsky, D., Sherstov, A.A.: A separation of NP and coNP in multiparty communication complexity. Theory of Computing 6(1), 227–245 (2010)

    Article  MathSciNet  Google Scholar 

  13. Kalai, A., Klivans, A.R., Mansour, Y., Servedio, R.A.: Agnostically learning halfspaces. SIAM Journal on Computing 37(6), 1777–1805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klauck, H., Špalek, R., de Wolf, R.: Quantum and classical strong direct product theorems and optimal time-space tradeoffs. SIAM Journal on Computing 36(5), 1472–1493 (2007)

    Article  MATH  Google Scholar 

  15. Klivans, A.R., Servedio, R.A.: Learning DNF in time \(2^{\tilde{O}(n^{1/3})}\). J. of Comput. and System Sci. 68(2), 303–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klivans, A.R., Sherstov, A.A.: Lower bounds for agnostic learning via approximate rank. Computational Complexity 19(4), 581–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, T., Shraibman, A.: Disjointness is hard in the multi-party number-on-the-forehead model. In: Proc. of the Conference on Computational Complexity, pp. 81–91 (2008)

    Google Scholar 

  18. Markov, V.: On functions which deviate least from zero in a given interval, St. Petersburg (1892) (Russian)

    Google Scholar 

  19. Minsky, M.L., Papert, S.A.: Perceptions: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)

    Google Scholar 

  20. Open problems in analysis of Boolean functions. Compiled for the Simons Symposium. CoRR, abs/1204.6447, February 5-11 (2012)

    Google Scholar 

  21. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials. Computational Complexity 4, 301–313 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean functions (Preliminary Version). In: Proc. of the Symp. on Theory of Computing (STOC), pp. 468–474 (1992)

    Google Scholar 

  23. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, New York (1986)

    MATH  Google Scholar 

  24. Sherstov, A.A.: Approximate inclusion-exclusion for arbitrary symmetric functions. Computational Complexity 18(2), 219–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sherstov, A.A.: Approximating the AND-OR tree. Electronic Colloquium on Computational Complexity (ECCC) 20(023) (2013)

    Google Scholar 

  26. Sherstov, A.A.: Communication lower bounds using dual polynomials. Bulletin of the EATCS 95, 59–93 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sherstov, A.A.: Making polynomials robust to noise. In: Proceedings of Symp. Theory of Computing, pp. 747–758 (2012)

    Google Scholar 

  29. Sherstov, A.A.: Separating AC0 from depth-2 majority circuits. SIAM Journal on Computing 28(6), 2113–2129 (2009)

    Article  MathSciNet  Google Scholar 

  30. Sherstov, A.A.: The intersection of two halfspaces has high threshold degree. In: Proc. of Foundations of Computer Science (FOCS), pp. 343–362 (2009); To appear in SIAM J. Comput. (special issue for FOCS 2009)

    Google Scholar 

  31. Sherstov, A.A.: The multiparty communication complexity of set disjointness. In: Proceedings of Symp. Theory of Computing, pp. 525–548 (2012)

    Google Scholar 

  32. Shi, Y.: Approximating linear restrictions of Boolean functions. Manuscript (2002), http://web.eecs.umich.edu/~shiyy/mypapers/linear02-j.ps

  33. Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed functions. Quantum Information & Computation 9(5), 444–460 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Špalek, R.: A dual polynomial for OR. Manuscript (2008), http://arxiv.org/abs/0803.4516

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bun, M., Thaler, J. (2013). Dual Lower Bounds for Approximate Degree and Markov-Bernstein Inequalities. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics