Abstract
We show that the shadow vertex algorithm can be used to compute a short path between a given pair of vertices of a polytope \(P = \left\{ x \in \mathbb{R}^n \,\colon\, Ax \leq b \right\}\) along the edges of P, where A ∈ ℝm ×n. Both, the length of the path and the running time of the algorithm, are polynomial in m, n, and a parameter 1/δ that is a measure for the flatness of the vertices of P. For integer matrices A ∈ ℤm ×n we show a connection between δ and the largest absolute value Δ of any sub-determinant of A, yielding a bound of O(Δ4 m n 4) for the length of the computed path. This bound is expressed in the same parameter Δ as the recent non-constructive bound of O(Δ2 n 4 log(n Δ)) by Bonifas et al. [1].
For the special case of totally unimodular matrices, the length of the computed path simplifies to O(m n 4), which significantly improves the previously best known constructive bound of O(m 16 n 3 log3 (mn)) by Dyer and Frieze [7].
This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. In: Proc. of the 28th ACM Symposium on Computational Geometry (SoCG), pp. 357–362 (2012)
Borgwardt, K.H.: A probabilistic analysis of the simplex method. Springer-Verlag New York, Inc., New York (1986)
Brightwell, G., van den Heuvel, J., Stougie, L.: A linear bound on the diameter of the transportation polytope. Combinatorica 26(2), 133–139 (2006)
Brunsch, T., Cornelissen, K., Manthey, B., Röglin, H.: Smoothed analysis of the successive shortest path algorithm. In: Proc. of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1180–1189 (2013)
Brunsch, T., Röglin, H.: Improved smoothed analysis of multiobjective optimization. In: Proc. of the 44th Annual ACM Symposium on Theory of Computing (STOC), pp. 407–426 (2012)
Dantzig, G.B.: Linear programming and extensions. Rand Corporation Research Study. Princeton University Press (1963)
Dyer, M.E., Frieze, A.M.: Random walks, totally unimodular matrices, and a randomised dual simplex algorithm. Mathematical Programming 64, 1–16 (1994)
Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bulletin of the AMS 26(2), 315–316 (1992)
Klee, V., Walkup, D.W.: The d-step conjecture for polyhedra of dimension d < 6. Acta Mathematica 117, 53–78 (1967)
Naddef, D.: The hirsch conjecture is true for (0, 1)-polytopes. Mathematical Programming 45, 109–110 (1989)
Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming 78(2), 109–129 (1997)
Santos, F.: A counterexample to the hirsch conjecture. CoRR, abs/1006.2814 (2010)
Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brunsch, T., Röglin, H. (2013). Finding Short Paths on Polytopes by the Shadow Vertex Algorithm. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-39206-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39205-4
Online ISBN: 978-3-642-39206-1
eBook Packages: Computer ScienceComputer Science (R0)