Skip to main content

Finding Short Paths on Polytopes by the Shadow Vertex Algorithm

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7965))

Included in the following conference series:

Abstract

We show that the shadow vertex algorithm can be used to compute a short path between a given pair of vertices of a polytope \(P = \left\{ x \in \mathbb{R}^n \,\colon\, Ax \leq b \right\}\) along the edges of P, where A ∈ ℝm ×n. Both, the length of the path and the running time of the algorithm, are polynomial in m, n, and a parameter 1/δ that is a measure for the flatness of the vertices of P. For integer matrices A ∈ ℤm ×n we show a connection between δ and the largest absolute value Δ of any sub-determinant of A, yielding a bound of O4 m n 4) for the length of the computed path. This bound is expressed in the same parameter Δ as the recent non-constructive bound of O2 n 4 log(n Δ)) by Bonifas et al. [1].

For the special case of totally unimodular matrices, the length of the computed path simplifies to O(m n 4), which significantly improves the previously best known constructive bound of O(m 16 n 3 log3 (mn)) by Dyer and Frieze [7].

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. In: Proc. of the 28th ACM Symposium on Computational Geometry (SoCG), pp. 357–362 (2012)

    Google Scholar 

  2. Borgwardt, K.H.: A probabilistic analysis of the simplex method. Springer-Verlag New York, Inc., New York (1986)

    Google Scholar 

  3. Brightwell, G., van den Heuvel, J., Stougie, L.: A linear bound on the diameter of the transportation polytope. Combinatorica 26(2), 133–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunsch, T., Cornelissen, K., Manthey, B., Röglin, H.: Smoothed analysis of the successive shortest path algorithm. In: Proc. of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1180–1189 (2013)

    Google Scholar 

  5. Brunsch, T., Röglin, H.: Improved smoothed analysis of multiobjective optimization. In: Proc. of the 44th Annual ACM Symposium on Theory of Computing (STOC), pp. 407–426 (2012)

    Google Scholar 

  6. Dantzig, G.B.: Linear programming and extensions. Rand Corporation Research Study. Princeton University Press (1963)

    Google Scholar 

  7. Dyer, M.E., Frieze, A.M.: Random walks, totally unimodular matrices, and a randomised dual simplex algorithm. Mathematical Programming 64, 1–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bulletin of the AMS 26(2), 315–316 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klee, V., Walkup, D.W.: The d-step conjecture for polyhedra of dimension d < 6. Acta Mathematica 117, 53–78 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Naddef, D.: The hirsch conjecture is true for (0, 1)-polytopes. Mathematical Programming 45, 109–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming 78(2), 109–129 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Santos, F.: A counterexample to the hirsch conjecture. CoRR, abs/1006.2814 (2010)

    Google Scholar 

  13. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brunsch, T., Röglin, H. (2013). Finding Short Paths on Polytopes by the Shadow Vertex Algorithm. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39206-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39206-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39205-4

  • Online ISBN: 978-3-642-39206-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics