Advertisement

Fabrication of Ordered Quantum Rings by Molecular Beam Epitaxy

  • Jiang WuEmail author
  • Zhiming M. Wang
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Quantum rings have attracted a lot of attention due to their unique properties and have been under extensive theoretical and experimental investigations. For example, Aharonov-Bohm effect has been observed in quantum rings which shows potential to realize quantum computational devices. In addition, quantum rings have found application in optoelectronics. Due to the ring-shaped morphology altered from dots, the vertical confinement in nanorings is stronger than in quantum dots. Laser and infrared photodetectors have recently been demonstrated by using quantum rings. To meet the urgent demands for quantum rings, various effects have been devoted to quantum ring fabrication techniques. There are two of the most used bottom-up fabrication methods of self-assembled rings using molecular beam epitaxy (MBE). Semiconductor quantum rings can be created by conventional molecular beam epitaxy and Droplet Epitaxy technique. Despite great efforts devoted to quantum ring fabrication using these techniques, alignment of quantum rings is not well documented. Fabrication of ordered quantum ring is of high priority for theoretical as well as practical investigations, such as persistent current and photodetectors. Recently, both vertically and laterally ordered quantum rings have been demonstrated. In this chapter, the growth mechanisms and fabrication techniques for aligned quantum rings grown are reviewed.

Keywords

Atomic Force Microscopy Image Polystyrene Sphere Quantum Ring Nanosphere Lithography Typical Atomic Force Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Leturcq, L. Schmid, K. Ensslin, Y. Meir, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett. 95, 126603 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    A. Fuhrer, S. Luscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Nature 413, 822 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    V.M. Fomin, V.N. Gladilin, J.T. Devreese, N.A.J.M. Kleemans, P.M. Koenraad, Phys. Rev. B 77, 205326 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    M. Zarenia, J.M. Pereira, F.M. Peeters, G.A. Farias, Nano Lett. 9, 4088 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    A.J.M. Giesbers, U. Zeitler, M.I. Katsnelson, D. Reuter, A.D. Wieck, G. Biasiol, L. Sorba, J.C. Maan, Nat. Phys. 6, 173 (2010) CrossRefGoogle Scholar
  6. 6.
    W. Chang, C. Lin, Y. Fu, T. Lin, H. Lin, S. Cheng, S. Lin, C. Lee, Nanoscale Res. Lett. 5, 680 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    A. Lorke, R. Johannes Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 84, 2223 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    N.A.J.M. Kleemans, I. Bominaar-Silkens, V.M. Fomin et al., Phys. Rev. Lett. 99, 146808 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    A.O. Govorov, S.E. Ulloa, K. Karrai, R.J. Warburton, Phys. Rev. B 66, 081309 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    I.R. Sellers, V.R. Whiteside, I.L. Kuskovsky, A.O. Govorov, B.D. McCombe, Phys. Rev. Lett. 100, 136405 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    M.D. Teodoro, V.L. Campo, V. Lopez-Richard et al., Phys. Rev. Lett. 104, 086401 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S. Bhowmick, G. Huang, W. Guo, C.S. Lee, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera, Appl. Phys. Lett. 96, 231103 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    J. Wu, Z. Li, D. Shao, M.O. Manasreh, V.P. Kunets, Z.M. Wang, G.J. Salamo, B.D. Weaver, Appl. Phys. Lett. 94, 171102 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Z.C. Wen, H.X. Wei, X.F. Han, Appl. Phys. Lett. 91, 122511 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    T. Mano, T. Kuroda, K. Mitsuishi, M. Yamagiwa, X. Guo, K. Furuya, K. Sakoda, N. Koguchi, J. Cryst. Growth 301–302, 740 (2007) CrossRefGoogle Scholar
  16. 16.
    Y.S. Jung, W. Jung, C.A. Ross, Nano Lett. 8, 2975 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    C. Somaschini, S. Bietti, N. Koguchi, S. Sanguinetti, Nano Lett. 9, 3419 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    D. Granados, J.M. García, Appl. Phys. Lett. 82, 2401 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    A.Z. Li, Z.M. Wang, J. Wu, G.J. Salamo, Nano Res. 3, 490 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    P. Martyniuk, A. Rogalski, Proc. SPIE 6940, 694004 (2008) CrossRefGoogle Scholar
  21. 21.
    Q. Shao, A.A. Balandin, A.I. Fedoseyev, M. Turowski, Appl. Phys. Lett. 91, 163503 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Chang, S. Jian, J. Juang, Nanoscale Res. Lett. 5, 1456 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    Z.M. Wang, S. Seydmohamadi, J.H. Lee, G.J. Salamo, Appl. Phys. Lett. 85, 5031 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    Q. Wei, J. Lian, W. Lu, L. Wang, Phys. Rev. Lett. 100, 076103 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    C.M. Müller, F.C.F. Mornaghini, R. Spolenak, Nanotechnology 19, 485306 (2008) CrossRefGoogle Scholar
  26. 26.
    J.L. Baker, A. Widmer-Cooper, M.F. Toney, P.L. Geissler, A.P. Alivisatos, Nano Lett. 10, 195 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, U. Gösele, Nano Lett. 9, 2519 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    S. Lee, C. Mao, C.E. Flynn, A.M. Belcher, Science 296, 892 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, A. Javey, Nano Lett. 8, 20 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    M. Junkin, J. Watson, J.P.V. Geest, P.K. Wong, Adv. Mater. 21, 1247 (2009) CrossRefGoogle Scholar
  31. 31.
    J. Tersoff, C. Teichert, M.G. Lagally, Phys. Rev. Lett. 76, 1675 (1996) ADSCrossRefGoogle Scholar
  32. 32.
    H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84, 1756 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    Z.M. Wang, K. Holmes, Y.I. Mazur, G.J. Salamo, Appl. Phys. Lett. 84, 1931 (2004) ADSCrossRefGoogle Scholar
  34. 34.
    Z.M. Wang, G.J. Salamo, Phys. Rev. B 67, 125324 (2003) ADSCrossRefGoogle Scholar
  35. 35.
    R. Blossey, A. Lorke, Phys. Rev. E 65, 021603 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    J. Wu, Z. Wang, K. Holmes, E. Marega Jr., Y. Mazur, G. Salamo, J. Nanopart. Res. 14, 919 (2012) CrossRefGoogle Scholar
  37. 37.
    Z.M. Wang, H. Churchill, C.E. George, G.J. Salamo, J. Appl. Phys. 96, 6908 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    H. Lan, Y. Ding, Nano Today (2012) Google Scholar
  39. 39.
    L. Hrivnák, Czechoslov. J. Phys. 34, 436 (1984) ADSCrossRefGoogle Scholar
  40. 40.
    J. Wu, Z.M. Wang, K. Holmes, E. Marega Jr., Z. Zhou, H. Li, Y.I. Mazur, G.J. Salamo, Appl. Phys. Lett. 100, 203117 (2012) ADSCrossRefGoogle Scholar
  41. 41.
    B.L. Liang, Z.M. Wang, K.A. Sablon, Y.I. Mazur, G.J. Salamo, Nanoscale Res. Lett. 2, 609–613 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    Z.M. Wang, V.R. Yazdanpanah, C.L. Workman, W.Q. Ma, J.L. Shultz, G.J. Salamo, Phys. Rev. B 66, 193313 (2002) ADSCrossRefGoogle Scholar
  43. 43.
    Z. Li, J. Wu, Z. Wang, D. Fan, A. Guo, S. Li, S. Yu, O. Manasreh, G. Salamo, Nanoscale Res. Lett. 5, 1079 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    M. Schmidbauer, S. Seydmohamadi, D. Grigoriev, Z.M. Wang, Y.I. Mazur, P. Schäfer, M. Hanke, R. Köhler, G.J. Salamo, Phys. Rev. Lett. 96, 066108 (2006) ADSCrossRefGoogle Scholar
  45. 45.
    R. Blossey, A. Lorke, Phys. Rev. E 65, 021603 (2002) ADSCrossRefGoogle Scholar
  46. 46.
    G. Springholz, M. Pinczolits, V. Holy, S. Zerlauth, I. Vavra, G. Bauer, Physica E, Low-Dimens. Syst. Nanostruct. 9, 149 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    H. Brune, M. Giovannini, K. Bromann, K. Kern, Nature 394, 451 (1998) ADSCrossRefGoogle Scholar
  48. 48.
    R. Li, P. Dapkus, M.E. Thompson, W. Jeong, C. Harrison, P. Chaikin, R. Register, D. Adamson, Appl. Phys. Lett. 76, 1689 (2000) ADSCrossRefGoogle Scholar
  49. 49.
    P. Liu, Y.W. Zhang, C. Lu, Appl. Phys. Lett. 90, 071905 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    Y. Ma, J. Cui, Y. Fan, Z. Zhong, Z. Jiang, Nanoscale Res. Lett. 6, 205 (2011) ADSCrossRefGoogle Scholar
  51. 51.
    R. Ji, W. Lee, R. Scholz, U. Gösele, K. Nielsch, Adv. Mater. 18, 2593 (2006) CrossRefGoogle Scholar
  52. 52.
    K.L. Hobbs, P.R. Larson, G.D. Lian, J.C. Keay, M.B. Johnson, Nano Lett. 4, 167 (2004) ADSCrossRefGoogle Scholar
  53. 53.
    H. Ling, S. Wang, C. Lee, M. Lo, J. Appl. Phys. 105, 034504 (2009) ADSCrossRefGoogle Scholar
  54. 54.
    I.R. Sellers, A.O. Govorov, B.D. McCombe, J. Nanoelectron. Optoelectron. 6, 4–19 (2011) CrossRefGoogle Scholar
  55. 55.
    A.O. Govorov, A.V. Kalameitsev, R. Warburton, K. Karrai, S.E. Ulloa, Physica E, Low-Dimens. Syst. Nanostruct. 13, 297 (2002) ADSCrossRefGoogle Scholar
  56. 56.
    E. Zipper, M. Kurpas, J. Sadowski, M.M. Maska, J. Phys. Condens. Matter 23, 115302 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    R. Citro, F. Romeo, Phys. Rev. B 75, 073306 (2007) ADSCrossRefGoogle Scholar
  58. 58.
    S. Bellucci, P. Onorato, Phys. Rev. B 78, 235312 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduP.R. China

Personalised recommendations