Self-organized Quantum Rings: Physical Characterization and Theoretical Modeling

  • V. M. FominEmail author
  • V. N. Gladilin
  • J. T. Devreese
  • P. M. Koenraad
Part of the NanoScience and Technology book series (NANO)


An adequate modeling of the self-organized quantum rings is possible only on the basis of the modern characterization of those nanostructures. We discuss an atomic-scale analysis of the indium distribution of self-organized InGaAs quantum rings (QRs). The analysis of the shape, size and composition of self-organized InGaAs QRs at the atomic scale reveals that AFM only shows the material coming out of the QDs during the QR formation. The remaining QD material, as observed by Cross-Sectional Scanning Tunneling Microscopy (X-STM), shows an asymmetric indium-rich crater-like shape with a depression rather than an opening at the center and determines the observed ring-like electronic properties of QR structures. A theoretical model of the geometry and materials properties of the self-organized QRs is developed on that basis and the magnetization is calculated as a function of the applied magnetic field. Although the real QR shape differs strongly from an idealized circular-symmetric open-ring structure, Aharonov-Bohm-type oscillations in the magnetization have been predicted to survive. They have been observed using the torsion magnetometry on InGaAs QRs. Examples of prospective applications of QRs are presented that do and do not utilize the topological properties of QRs.


Atomic Force Microscopy Persistent Current Quantum Ring Adiabatic Potential Electron Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff, Appl. Phys. Lett. 71, 2014 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. García, P.M. Petroff, Phys. Rev. Lett. 84, 2223 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. García, W. Schoenfeld, P.M. Petroff, Nature 405, 926 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Warburton, C. Schulhauser, D. Haft, C. Schäflein, K. Karrai, J.M. García, W. Schoenfeld, P.M. Petroff, Phys. Rev. B 65, 113303 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    V.M. Fomin, J. Nanoelectron. Optoelectron. 6, 1 (2011) CrossRefGoogle Scholar
  6. 6.
    G. Biasiol, S. Heun, Phys. Rep. 500, 117 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Appl. Phys. Lett. 87, 131902 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Physica E 32, 41 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    N.A.J.M. Kleemans, I.M.A. Bominaar-Silkens, V.M. Fomin, V.N. Gladilin, D. Granados, A.G. Taboada, J.M. García, P. Offermans, U. Zeitler, P.C.M. Christianen, J.C. Maan, J.T. Devreese, P.M. Koenraad, Phys. Rev. Lett. 99, 146808 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    T.-C. Lin, C.-H. Lin, H.-S. Ling, Y.-J. Fu, W.-H. Chang, S.-D. Lin, C.-P. Lee, Phys. Rev. B 80, 081304(R) (2009) ADSCrossRefGoogle Scholar
  11. 11.
    P. Moon, K. Park, E. Yoon, J.-P. Leburton, Phys. Status Solidi RRL 3, 76 (2009) CrossRefGoogle Scholar
  12. 12.
    P. Moon, W.J. Choi, K. Park, E. Yoon, J.D. Lee, J. Appl. Phys. 109, 103701 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    V. Arsoski, N. Čukarić, M. Tadić, F.M. Peeters, Phys. Scr. T 149, 014054 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    L.M. Thu, W.T. Chiu, O. Voskoboynikov, Phys. Rev. B 85, 205419 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    R. Blossey, A. Lorke, Phys. Rev. E 65, 021603 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    D. Granados, J.M. García, Appl. Phys. Lett. 82, 2401 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    D. Granados, J.M. García, T. Ben, S.I. Molina, Appl. Phys. Lett. 86, 071918 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    V. Baranwal, G. Biassol, S. Heun, A. Locatelli, T.O. Mentes, M.N. Orti, L. Sorba, Phys. Rev. B 80, 155328 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    C.H. Lin, H.S. Lin, C.C. Huang, S.K. Su, S.D. Lin, K.W. Sun, C.P. Lee, Y.K. Liu, M.D. Yang, J.L. Shen, Appl. Phys. Lett. 94, 183101 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    M.D. Teodoro, A. Malachias, V. Lopes-Oliveira, D.F. Cesar, V. Lopez-Richard, G.E. Marques, E. Marega Jr., M. Benamara, Yu.I. Mazur, G.J. Salamo, J. Appl. Phys. 112, 014319 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    Y. Lv, J. Cui, Z.M. Jiang, X. Yang, Nanoscale Res. Lett. 7, 659 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    P.W. Fry, I.E. Itskevich, D.J. Mowbray, M.S. Skolnick, J.J. Finley, J.A. Barker, E.P. O’Reilly, L.R. Wilson, I.A. Larkin, P.A. Maksym, M. Hopkinson, M. Al-Khafaji, J.P.R. David, A.G. Cullis, G. Hill, J.C. Clark, Phys. Rev. Lett. 84, 733 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    J.A. Barker, R.J. Warburton, E.P. O’Reilly, Phys. Rev. B 69, 035327 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    L.G. Wang, P. Kratzer, M. Scheffler, Q.K.K. Liu, Appl. Phys. A, Mater. Sci. Process. 73, 161 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    Z.R. Wasilewski, S. Fafard, J.P. McCaffrey, J. Cryst. Growth 201/202, 1131 (1999) ADSCrossRefGoogle Scholar
  26. 26.
    E. Steimetz, T. Wehnert, H. Kirmse, F. Poser, J.-T. Zettler, W. Neumann, W. Richter, J. Cryst. Growth 221, 592 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    A. Lenz, H. Eisele, R. Timm, S.K. Becker, R.L. Sellin, U.W. Pohl, D. Bimberg, M. Dähne, Appl. Phys. Lett. 85, 3848 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    K. Shiraishi, Appl. Phys. Lett. 60, 1363 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    P. Offermans, P. Koenraad, J. Wolter, K. Pierz, M. Roy, P. Maksym, Physica E 26, 236 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    D.M. Bruls, J.W.A.M. Vugs, P.M. Koenraad, H.W.M. Salemink, J.H. Wolter, M. Hopkinson, M.S. Skolnick, F. Long, S.P.A. Gill, Appl. Phys. Lett. 81, 1708 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    V.M. Fomin, V.N. Gladilin, S.N. Klimin, J.T. Devreese, N.A.J.M. Kleemans, P.M. Koenraad, Phys. Rev. B 76, 235320 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995) ADSCrossRefGoogle Scholar
  33. 33.
    J.A. Barker, E.P. O’Reilly, Phys. Rev. B 61, 13840 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989) ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    V.M. Fomin, V.N. Gladilin, J.T. Devreese, P. Offermans, P.M. Koenraad, J.H. Wolter, J.M. García, D. Granados, AIP Conf. Proc. 772, 803 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    M.R. Schaapman, P.C.M. Christianen, J.C. Maan, D. Reuter, A.D. Wieck, Appl. Phys. Lett. 81, 1041 (2002) ADSCrossRefGoogle Scholar
  38. 38.
    V.M. Fomin, V.N. Gladilin, J.T. Devreese, N.A.J.M. Kleemans, P.M. Koenraad, Phys. Rev. B 77, 205326 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    V.M. Fomin, V.N. Gladilin, J.T. Devreese, N.A.J.M. Kleemans, M. Bozkurt, P.M. Koenraad, Phys. Status Solidi (b) 245, 2657 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    V.M. Fomin, V.N. Gladilin, J.T. Devreese, J.H. Blokland, P.C.M. Christianen, J.C. Maan, A.G. Taboada, D. Granados, J.M. García, N.A.J.M. Kleemans, H.C.M. van Genuchten, M. Bozkurt, P.M. Koenraad, Proc. SPIE 7364, 736402 (2009) CrossRefGoogle Scholar
  41. 41.
    N.A.J.M. Kleemans, J.H. Blokland, A.G. Taboada, H.C.M. van Genuchten, M. Bozkurt, V.M. Fomin, V.N. Gladilin, D. Granados, J.M. García, P.C.M. Christianen, J.C. Maan, J.T. Devreese, P.M. Koenraad, Phys. Rev. B 80, 155318 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S.J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, M. Bayer, Phys. Rev. Lett. 92, 187402 (2004) ADSCrossRefGoogle Scholar
  43. 43.
    A. Babinski, M. Potemski, S. Raymond, J. Lapointe, Z.R. Wasilewski, Phys. Rev. B 74, 155301 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    S. Awirothananon, S. Raymond, S. Studenikin, M. Vachon, W. Render, A. Sachrajda, X. Wu, A. Babinski, M. Potemski, S. Fafard, S.J. Cheng, M. Korkusinski, P. Hawrylak, Phys. Rev. B 78, 235313 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C. Bof Bufon, C. Deneke, Y.H. Chen, A. Rastelli, O.G. Schmidt, V. Zwiller, Phys. Rev. B 82, 075309 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, A.G.U. Perera, Appl. Phys. Lett. 94, 101115 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    J. Wu, Z.M. Wang, V.G. Dorogan, S. Li, Z. Zhou, H. Li, J. Lee, E.S. Kim, G.J. Salamo, Appl. Phys. Lett. 101, 043904 (2012) ADSCrossRefGoogle Scholar
  48. 48.
    D. Granados, J.M. García, J. Cryst. Growth 251, 213 (2007) ADSCrossRefGoogle Scholar
  49. 49.
    W. Zhang, Z. Su, M. Gong, C.-F. Li, G.-C. Guo, L. He, Europhys. Lett. 83, 67004 (2008) ADSCrossRefGoogle Scholar
  50. 50.
    R.J. Young, E.P. Smakman, A.M. Sanchez, P. Hodgson, P.M. Koenraad, M. Hayne, Appl. Phys. Lett. 100, 082104 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    E. Zipper, M. Kurpas, M.M. Maska, New J. Phys. 14, 093029 (2012) ADSCrossRefGoogle Scholar
  52. 52.
    A.M. Fisher, V.L. Campo, M.E. Portnoi, R. Rudolf, Phys. Rev. Lett. 102, 096405 (2009) ADSCrossRefGoogle Scholar
  53. 53.
    M. Abbarchi, C.A. Mastrandrea, A. Vinattieri, S. Sanguinetti, T. Mano, T. Kuroda, N. Koguchi, K. Sakoda, M. Gurioli, Phys. Rev. B 79, 085308 (2009) ADSCrossRefGoogle Scholar
  54. 54.
    E. Rasanen, A. Muhle, M. Aichinger, R.J. Haug, Phys. Rev. B 84, 165320 (2011) ADSCrossRefGoogle Scholar
  55. 55.
    E. Zipper, M. Kurpas, J. Sadowski, M.M. Maska, J. Phys. Condens. Matter 23, 115302 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. M. Fomin
    • 1
    Email author
  • V. N. Gladilin
    • 2
  • J. T. Devreese
    • 2
  • P. M. Koenraad
    • 3
  1. 1.Institute for Integrative NanosciencesIFW DresdenDresdenGermany
  2. 2.Theory of Quantum and Complex SystemsUniversity of AntwerpAntwerpBelgium
  3. 3.Photonics and Semiconductor NanophysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations