Advertisement

Hole Mixing in Semiconductor Quantum Rings

  • Carlos Segarra
  • Josep PlanellesEmail author
  • Juan I. Climente
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Many applications of semiconductor quantum dots rely on the use of valence band holes. A prominent example is current endeavour to develop quantum information science using the spin of holes rather than that of electrons. Understanding the spin and orbital properties of holes is necessary for further progress. In self-assembled InAs/GaAs quantum dots, the hole ground state is mainly formed by the heavy hole subband. However, there is a finite mixing with the light-hole subband which has been shown to be critical in determining the hole spin properties. A large number of works have then investigated the influence of such coupling in dots. Based on k⋅p theory, in this chapter we study the influence of hole subband mixing in self-assembled quantum rings. It is shown that the inner cavity of the ring enhances the light hole component of the ground state. As the quasi-1D limit is approached, the light-hole character becomes comparable to that of the heavy hole. In InAs/GaAs quantum rings strain reduces the coupling, but the mixing is still larger than in quantum dots. Strain also gives rise to unusual phenomena, such as partial localization of the heavy holes inside the repulsive core region. Deviations of quantum rings from the perfect axial symmetry are shown to have a minor influence on the hole mixing.

Keywords

Heavy Hole Light Hole Lateral Confinement Repulsive Core Hole Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Support from MICINN project CTQ2011-27324 and UJI-Bancaixa project P1-1A2009-03 is acknowledged.

References

  1. 1.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999) CrossRefGoogle Scholar
  2. 2.
    M. Dyakonov (ed.), Spin Physics in Semiconductors (Springer, Berlin, 2010) Google Scholar
  3. 3.
    R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003) CrossRefGoogle Scholar
  4. 4.
    L. Jacak, P. Hawrylak, A. Wójs, Quantum Dots (Springer, Berlin, 1998) CrossRefGoogle Scholar
  5. 5.
    D. Brunner, B.D. Gerardot, P.A. Dalgarno, G. Wüst, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Science 325, 70 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    A. Greilich, S.G. Carter, D. Kim, A.S. Bracker, D. Gammon, Nat. Photonics 5, 702 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    T.M. Godden, J.H. Quilter, A.J. Ramsay, Y. Wu, P. Brereton, S.J. Boyle, I.J. Luxmoore, J. Puebla-Nunez, A.M. Fox, M.S. Skolnick, Phys. Rev. Lett. 108, 017402 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    K. De Greve, P.L. McMahon, D. Press, T.D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, Y. Yamamoto, Nat. Phys. 7, 827 (2011) CrossRefGoogle Scholar
  9. 9.
    K. Müller, A. Bechtold, C. Ruppert, C. Hautmann, J.S. Wildmann, T. Kaldewey, M. Bichler, H.J. Krenner, G. Abstreiter, M. Betz, J.J. Finley, Phys. Rev. B 85, 241306(R) (2012) ADSCrossRefGoogle Scholar
  10. 10.
    E.A. Stinaff, M. Scheibner, A.S. Bracker, I.V. Ponomarev, V.L. Korenev, M.E. Ware, M.F. Doty, T.L. Reinecke, D. Gammon, Science 311, 636 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J.J. Finley, D.V. Bulaev, D. Loss, Phys. Rev. B 76, 241306(R) (2007) ADSCrossRefGoogle Scholar
  12. 12.
    B.D. Gerardot, D. Brunner, P.A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Nature 451, 441 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    J. Fischer, W.A. Coish, D.V. Bulaev, D. Loss, Phys. Rev. B 78, 155329 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    B. Eble, C. Testelin, P. Desfonds, F. Bernardot, A. Balocchi, T. Amand, A. Miard, A. Lemaitre, X. Marie, M. Chamarro, Phys. Rev. Lett. 102, 146601 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    P. Fallahi, S.T. Yilmaz, A. Imamoglu, Phys. Rev. Lett. 105, 257402 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    E.A. Chekhovich, A.B. Krysa, M.S. Skolnick, A.I. Tartakovskii, Phys. Rev. Lett. 106, 027402 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    C.-Y. Lu, Y. Zhao, A.N. Vamivakas, C. Matthiesen, S. Fält, A. Badolato, M. Atatüre, Phys. Rev. B 81, 035332 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    M.F. Doty, J.I. Climente, A. Greilich, M. Yakes, A.S. Bracker, D. Gammon, Phys. Rev. B 81, 035308 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Blokland, F.J.P. Wijnen, P.C.M. Christiansen, U. Zeitler, J.C. Maan, Phys. Rev. B 75, 23305 (2007) CrossRefGoogle Scholar
  20. 20.
    J.I. Climente, J. Planelles, M. Pi, F. Malet, Phys. Rev. B 72, 233305 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    W. Jaskólski, M. Zielinski, G.W. Bryant, Phys. Rev. B 74, 195339 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    G. Bester, A. Zunger, Phys. Rev. B 72, 165334 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    M.F. Doty, J.I. Climente, M. Korkusinski, M. Scheibner, A.S. Bracker, P. Hawrylak, D. Gammon, Phys. Rev. Lett. 102, 047401 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    J.I. Climente, M. Korkusinski, G. Goldoni, P. Hawrylak, Phys. Rev. B 78, 115323 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    T. Chwiej, B. Szafran, Phys. Rev. B 81, 075302 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    A.I. Yakimov, A.A. Bloshkin, A.V. Dvurechenskii, Semicond. Sci. Technol. 24, 095002 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    G. Katsaros, V.N. Golovach, P. Spathis, N. Ares, M. Stoffel, F. Fournel, O.G. Schmidt, L.I. Glazman, S. De Franceschi, Phys. Rev. Lett. 107, 246601 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    F. Suarez, D. Granados, M. Luisa Dotor, J.M. Garcia, Nanotechnology 15, S126 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    J. Wu, Z.M. Wang, V.G. Dorogan, S. Li, Z. Zhou, H. Li, J. Lee, E.S. Kim, Y.I. Mazur, G.J. Salamo, Appl. Phys. Lett. 101, 043904 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    O. Tangmettajittakul, P. Boonpeng, P. Changmoung, S. Thainoi, S. Rattanathammaphan, S. Panyakeow, in Photovoltaics Specialists Conference 37th IEEE (2011), 002665 Google Scholar
  31. 31.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    A. Lorke, J. Luyken, A.O. Govorov, J.P. Kotthaus, Phys. Rev. Lett. 84, 2223 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, A. Forchel, Phys. Rev. Lett. 90, 186801 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    N.A.J.M. Kleemans, I.M.A. Bominaar-Silkens, V.M. Fomin, V.N. Gladilin, D. Granados, A.G. Taboada, J.M. Garcia, P. Offermans, U. Zeitler, J.C. Christianen Maan, J.T. Devreese, P.M. Koenraad, Phys. Rev. Lett. 99, 146808 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    F. Ding, B. Li, N. Akopian, U. Perinetti, Y.H. Chen, F.M. Peeters, A. Rastelli, V. Zwiller, O.G. Schmidt, J. Nanoelectron. Optoelectron. 6, 51 (2011) CrossRefGoogle Scholar
  36. 36.
    F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C. Bof Bufon, C. Deneke, Y.H. Chen, A. Rastelli, O.G. Schmidt, V. Zwiller, Phys. Rev. B 82, 075309 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    J.I. Climente, J. Planelles, W. Jaskolski, Phys. Rev. B 68, 075307 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    L.G.G.V. Dias da Silva, S.E. Ulloa, A.O. Govorov, Phys. Rev. B 70, 155318 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    V.M. Fomin, V.N. Gladilin, S.N. Klimin, J.T. Devreese, Phys. Rev. B 76, 235320 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    N. Cukaric, M. Tadic, F.M. Peeters, Superlattices Microstruct. 48, 491 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    A.O. Govorov, S.E. Ulloa, K. Karrai, R.J. Warburton, Phys. Rev. B 66, 081309(R) (2002) ADSCrossRefGoogle Scholar
  42. 42.
    B. Li, F.M. Peeters, Phys. Rev. B 83, 115448 (2011) ADSCrossRefGoogle Scholar
  43. 43.
    E. Waltersson, E. Lindroth, I. Pilskog, J.P. Hansen, Phys. Rev. B 79, 115318 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    M. Szopa, E. Zipper, J. Phys. Conf. Ser. 213, 012006 (2006) ADSCrossRefGoogle Scholar
  45. 45.
    C. Segarra, J.I. Climente, J. Planelles, J. Phys. Condens. Matter 24, 115801 (2012) ADSCrossRefGoogle Scholar
  46. 46.
    J. Planelles, F. Rajadell, J.I. Climente, J. Phys. Chem. C 114, 8337 (2010) CrossRefGoogle Scholar
  47. 47.
    J.I. Climente, J. Planelles, J. Nanoelectron. Optoelectron. 6, 81 (2011) CrossRefGoogle Scholar
  48. 48.
    M.G. Burt, J. Phys. Condens. Matter 4, 6651 (1992) ADSCrossRefGoogle Scholar
  49. 49.
    M.G. Burt, J. Phys. Condens. Matter 11, R53 (1999) ADSCrossRefGoogle Scholar
  50. 50.
    B.A. Foreman, Phys. Rev. B 48, 4964 (1993) ADSCrossRefGoogle Scholar
  51. 51.
    P.C. Sercel, K.J. Vahala, Phys. Rev. B 42, 3690 (1990) ADSCrossRefGoogle Scholar
  52. 52.
    J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955) ADSCrossRefzbMATHGoogle Scholar
  53. 53.
    J.M. Luttinger, Phys. Rev. 102, 1030 (1956) ADSCrossRefzbMATHGoogle Scholar
  54. 54.
    L. Voon, M. Willatzen, The kp Method: Electronic Properties of Semiconductors (Springer, Berlin, 2009) Google Scholar
  55. 55.
    F. Rajadell, M. Royo, J. Planelles, J. Appl. Phys. 111, 014303 (2012) ADSCrossRefGoogle Scholar
  56. 56.
    P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. Garcia, Appl. Phys. Lett. 87, 131902 (2005) ADSCrossRefGoogle Scholar
  57. 57.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001) ADSCrossRefGoogle Scholar
  58. 58.
    M. Tadic, F.M. Peeters, K.L. Janssens, M. Korkusiński, P. Hawrylak, J. Appl. Phys. 92, 5819 (2002) ADSCrossRefGoogle Scholar
  59. 59.
    J.A. Barker, R.J. Warburton, E.P. O’Reilly, Phys. Rev. B 69, 035327 (2004) ADSCrossRefGoogle Scholar
  60. 60.
    R. Blossey, A. Lorke, Phys. Rev. E 65, 021603 (2002) ADSCrossRefGoogle Scholar
  61. 61.
    C. Pryor, Phys. Rev. B 57, 7190 (1998) ADSCrossRefGoogle Scholar
  62. 62.
    W. Sheng, J.P. Leburton, Phys. Status Solidi 237, 394 (2003) CrossRefGoogle Scholar
  63. 63.
    M. Tadic, N. Cukaric, V. Asoski, F.M. Peeters, Phys. Rev. B 84, 125307 (2011) ADSCrossRefGoogle Scholar
  64. 64.
    C.Y.P. Chao, S.L. Chuang, Phys. Rev. B 46, 4110 (1992) ADSCrossRefGoogle Scholar
  65. 65.
    N.A.J.M. Kleemans, J.H. Blokland, A.G. Taboada, H.C.M. van Genuchten, M. Bozkurt, V.M. Fomin, V.N. Gladilin, D. Granados, J.M. García, P.C.M. Christianen, J.C. Maan, J.T. Devreese, P.M. Koenraad, Phys. Rev. B 80, 155318 (2009) ADSCrossRefGoogle Scholar
  66. 66.
    C. Pryor, Phys. Rev. Lett. 80, 3579 (1998) ADSCrossRefGoogle Scholar
  67. 67.
    S.E. Economou, J.I. Climente, A. Badolato, A.S. Bracker, D. Gammon, M.F. Doty, Phys. Rev. B 86, 085319 (2012) ADSCrossRefGoogle Scholar
  68. 68.
    T. Flissikowski, I.A. Akimov, A. Hundt, F. Henneberger, Phys. Rev. B 68, 0161309(R) (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Carlos Segarra
    • 1
  • Josep Planelles
    • 1
    Email author
  • Juan I. Climente
    • 1
  1. 1.Departament de Química Física i AnalíticaUniversitat Jaume ICastellóSpain

Personalised recommendations