Advertisement

Strained Quantum Rings

  • Pilkyung MoonEmail author
  • Euijoon Yoon
  • Won Jun Choi
  • JaeDong Lee
  • Jean-Pierre Leburton
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Electronic structures of quantum rings strongly depend on the strain profiles caused by the material environment around the ring. We will investigate the strain distributions and electronic structures of quantum rings capped by a support material of which lattice constant is smaller than those of the substrate and active material, and compare the results with a conventional quantum ring. The support material considerably weakens the longitudinal strains and biaxial strain of quantum rings as well as the hole confinement potentials. The unique band alignment of the structure enables the coexistence of type-I and type-II band alignments.

Keywords

Longitudinal Strain Heavy Hole GaAs Layer Hole State Valence Band Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially supported by Korea Institute for Advanced Study (P.M.) grant funded by the Korea government, and also by Internal Program (2E23910) of Korea Institute of Science and Technology (W.J.C.).

References

  1. 1.
    V.M. Fomin, J. Nanoelectron. Optoelectron. 6(1), 1–3 (2011) CrossRefGoogle Scholar
  2. 2.
    Q. Gong, R. Nötzel, P. Van Veldhoven, T. Eijkemans, J. Wolter, Appl. Phys. Lett. 84, 275 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    K. Nishi, H. Saito, S. Sugou, J.S. Lee, Appl. Phys. Lett. 74, 1111 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, A.Yu. Egorov, A.V. Lunev, B.V. Volovik, I.L. Krestnikov, Yu.G. Musikhin, N.A. Bert, P.S. Kop’ev, Zh.I. Alferov, N.N. Ledentsov, D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    N.T. Yeh, T.E. Nee, J.I. Chyi, T. Hsu, C. Huang, Appl. Phys. Lett. 76, 1567 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    E.T. Kim, Z. Chen, A. Madhukar, Appl. Phys. Lett. 81, 3473 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    R. Jia, D. Jiang, H. Liu, Y. Wei, B. Xu, Z. Wang, J. Cryst. Growth 234(2), 354–358 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    Z.Y. Zhang, B. Xu, P. Jin, X.Q. Meng, Ch.M. Li, X.L. Ye, Z.G. Wang, J. Appl. Phys. 92, 511 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    P.S. Wong, B.L. Liang, V.G. Dorogan, A.R. Albrecht, J. Tatebayashi, X. He, N. Nuntawong, Y.I. Mazur, G.J. Salamo, S.R.J. Brueck, D.L. Huffaker, Nanotechnology 19, 435710 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Q. Gong, R. Nötzel, P. Van Veldhoven, T. Eijkemans, J. Wolter, Appl. Phys. Lett. 85, 1404 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    K. Park, P. Moon, E. Ahn, S. Hong, E. Yoon, J.W. Yoon, H. Cheong, J.-P. Leburton, Appl. Phys. Lett. 86, 223110 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    P. Moon, K. Park, E. Yoon, J.P. Leburton, Phys. Status Solidi RRL 3(2–3), 76–78 (2009) CrossRefGoogle Scholar
  13. 13.
    P. Moon, W.J. Choi, K. Park, E. Yoon, J.D. Lee, J. Appl. Phys. 109, 103701 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    P. Moon, W.J. Choi, J. Lee, Phys. Rev. B 83(16), 165450 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    J.M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff, Appl. Phys. Lett. 71, 2014 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    S. Suraprapapich, S. Panyakeow, C. Tu, Appl. Phys. Lett. 90, 183112 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    F. Ding, L. Wang, S. Kiravittaya, E. Müller, A. Rastelli, O.G. Schmidt, Appl. Phys. Lett. 90, 173104 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    T. Raz, D. Ritter, G. Bahir, Appl. Phys. Lett. 82, 1706 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    B.C. Lee, C.P. Lee, Nanotechnology 15, 848 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    F.H. Li, Z.S. Tao, J. Qin, Y.Q. Wu, J. Zou, F. Lu, Y.L. Fan, X.J. Yang, Z.M. Jiang, Nanotechnology 18, 115708-1 (2011) ADSGoogle Scholar
  21. 21.
    P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Appl. Phys. Lett. 87, 131902 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    V. Fomin, V. Gladilin, S. Klimin, J. Devreese, N. Kleemans, P. Koenraad, Phys. Rev. B 76(23), 235320 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    P. Keating, Phys. Rev. 145(2), 637 (1966) ADSCrossRefGoogle Scholar
  24. 24.
    R.M. Martin, Phys. Rev. B 1(10), 4005 (1970) ADSCrossRefGoogle Scholar
  25. 25.
    S. Lee, F. Oyafuso, P. Von Allmen, G. Klimeck, Phys. Rev. B 69(4), 045316 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    C. Pryor, J. Kim, L. Wang, A. Williamson, A. Zunger, J. Appl. Phys. 83, 2548 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59(8), 5688–5701 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    M. Burt, J. Phys. Condens. Matter 4, 6651 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    B.A. Foreman, Phys. Rev. B 56(20), 12748–12751 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    H.B. Wu, S. Xu, J. Wang, Phys. Rev. B 74(20), 205329 (2006) ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. Moon, E. Yoon, W. Sheng, J.P. Leburton, Phys. Rev. B 79(12), 125325 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    W. Sheng, J.P. Leburton, Phys. Rev. Lett. 88(16), 167401 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    W. Sheng, J.P. Leburton, Phys. Rev. B 63(16), 161301 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    W. Sheng, J.P. Leburton, Appl. Phys. Lett. 80(15), 2755–2757 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    T.B. Bahder, Phys. Rev. B 41(17), 11992 (1990) ADSCrossRefGoogle Scholar
  36. 36.
    I. Vurgaftman, J. Meyer, L. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    I. Saïdi, S. Ben Radhia, K. Boujdaria, J. Appl. Phys. 104(2), 023706 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    C.Y.P. Chao, S.L. Chuang, Phys. Rev. B 46(7), 4110 (1992) ADSCrossRefGoogle Scholar
  39. 39.
    J. Barker, R. Warburton, E. O’Reilly, Phys. Rev. B 69(3), 035327 (2004) ADSCrossRefGoogle Scholar
  40. 40.
    S. Tomić, A.G. Sunderland, I.J. Bush, J. Mater. Chem. 16(20), 1963–1972 (2006) CrossRefGoogle Scholar
  41. 41.
    A. Schliwa, M. Winkelnkemper, D. Bimberg, Phys. Rev. B 76(20), 205324 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    J. Climente, J. Planelles, J. Nanoelectron. Optoelectron. 6(1), 81–86 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pilkyung Moon
    • 1
    Email author
  • Euijoon Yoon
    • 2
  • Won Jun Choi
    • 3
  • JaeDong Lee
    • 4
  • Jean-Pierre Leburton
    • 5
  1. 1.Department of PhysicsTohoku UniversitySendaiJapan
  2. 2.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  3. 3.Center for OptoElectronic Convergence SystemKorea Institute of Science and TechnologySeoulKorea
  4. 4.Department of Emerging Materials ScienceDaegu Gyeongbuk Institute of Science and TechnologyDaeguKorea
  5. 5.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations