Advertisement

Excitons Confined in Single Semiconductor Quantum Rings: Observation and Manipulation of Aharonov-Bohm-Type Oscillations

  • F. DingEmail author
  • B. Li
  • F. M. Peeters
  • A. Rastelli
  • V. Zwiller
  • O. G. Schmidt
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

We report on a magneto-photoluminescence study of single neutral excitons confined in single self-assembled semiconductor quantum rings. Oscillations in the exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Special emphasis is placed on the manipulation of this Aharonov-Bohm-type oscillations with a vertical electric field. We observe that both the exciton oscillator strength and the periodicity of the oscillation can be tuned. This tunability is explained by calculating the single particle wave function in both unstrained and strained semiconductor quantum rings in the presence of external electrical fields.

Keywords

Quantum Ring Exciton Energy Confinement Potential Directed Electric Field Vertical Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We acknowledge N. Akopian, U. Perinetti, A. Govorov, C.C. Bof Bufon, C. Deneke, V. Fomin, A. Govorov, and S. Kiravittaya for their help and fruitful discussions.

References

  1. 1.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    A.G. Aronov, Y. Sharvin, Rev. Mod. Phys. 59, 755 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    S. Zaric et al., Science 304, 1129 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    A. Fuhrer et al., Nature 413, 822 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    A. Chaplik, JETP Lett. 62, 900 (1995) ADSGoogle Scholar
  6. 6.
    A.O. Govorov, S.E. Ulloa, K. Karrai, R.J. Warburton, Phys. Rev. B 66, 081309 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    L.G.G.V. Dias da Silva, S.E. Ulloa, T.V. Shahbazyan, Phys. Rev. B 72, 125327 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    R.A. Römer, M.E. Raikh, Phys. Rev. B 62, 7045 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    M. Grochol, F. Grosse, R. Zimmermann, Phys. Rev. B 74, 115416 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    A.V. Kalameitsev, A.O. Govorov, V.M. Kovalev, JETP Lett. 68, 669 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    A.M. Fischer, J. Vivaldo, L. Campo, M.E. Portnoi, R.A. Römer, Phys. Rev. Lett. 102, 096405 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    E. Ribeiro, A.O. Govorov, W. Carvalho, G. Medeiros-Ribeiro, Phys. Rev. Lett. 92, 126402 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    I.R. Sellers et al., Phys. Rev. Lett. 100, 136405 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    I.R. Sellers, J. Nanoelectron. Optoelectron. 6, 4 (2010) CrossRefGoogle Scholar
  15. 15.
    M.D. Teodoro et al., Phys. Rev. Lett. 104, 086401 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    F. Ding et al., Phys. Rev. B 82, 075309 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    F. Ding et al., Appl. Phys. Lett. 90, 173104 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    A. Lorke et al., Mater. Sci. Eng. B 88, 225 (2002) CrossRefGoogle Scholar
  19. 19.
    C. Zhao et al., Appl. Phys. Lett. 92, 063122 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    S. Sanguinetti, J. Nanoelectron. Optoelectron. 6, 34 (2011) CrossRefGoogle Scholar
  21. 21.
    C. Heyn, J. Nanoelectron. Optoelectron. 6, 62 (2010) CrossRefGoogle Scholar
  22. 22.
    D.G. Hill, K.L. Lear, J.S. Harris Jr., J. Electrochem. Soc. 137, 2912 (1990) CrossRefGoogle Scholar
  23. 23.
    S.-J. Paik et al., Jpn. J. Appl. Phys. 42, 326 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    Z.M. Wang, L. Zhang, K. Holmes, G.J. Salamo, Appl. Phys. Lett. 86, 143106 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    B.N. Zvonkov et al., Nanotechnology 11, 221 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    L. Wang et al., New J. Phys. 10, 045010 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    T. Kuroda et al., Phys. Status Solidi (b) 246, 861 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    R.J. Warburton et al., Nature 405, 926 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    B.D. Gerardot et al., Appl. Phys. Lett. 90, 041101 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    M. Korkusiński, P. Hawrylak, M. Bayer, Phys. Status Solidi (b) 234, 273 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    F. Ding et al., Phys. Rev. Lett. 104, 067405 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    M.-F. Tsai et al., Phys. Rev. Lett. 101, 267402 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    F. Ding et al., J. Nanoelectron. Optoelectron. 6, 51 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    B. Li, F.M. Peeters, Phys. Rev. B 83, 115448 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, Singapore, 1999). Chap. 3 Google Scholar
  36. 36.
    G. Bryant, Phys. Rev. B 37, 8763 (1988) ADSCrossRefGoogle Scholar
  37. 37.
    M. Tadić, F.M. Peeters, J. Phys. Condens. Matter 16, 8633 (2004) ADSCrossRefGoogle Scholar
  38. 38.
    C.H. Henry, K. Nassau, Phys. Rev. B 1, 1628 (1970) ADSCrossRefGoogle Scholar
  39. 39.
    W. Dreyer, W.H. Müller, J. Olschewski, Acta Mech. 136, 171 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    K.L. Janssens, B. Partoens, F.M. Peeters, Phys. Rev. B 66, 075314 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    C. Pryor, Phys. Rev. B 57, 7190 (1998) ADSCrossRefGoogle Scholar
  42. 42.
    L. Börnstein, Numerical Data and Functional Relationships in Science and Technology, Group III, vol. 17a–b (Springer, New York, 1982) Google Scholar
  43. 43.
    B. Jusserand, M. Cardona, Light Scattering in Solid V: Superlattices and Other Microstructures. Topics in Applied Physics, vol. 66 (Springer, Berlin, 1989) Google Scholar
  44. 44.
    C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989) ADSCrossRefGoogle Scholar
  45. 45.
    L.W. Wang, J. Kim, A. Zunger, Phys. Rev. B 59, 5678 (1999) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • F. Ding
    • 1
    Email author
  • B. Li
    • 2
  • F. M. Peeters
    • 2
  • A. Rastelli
    • 3
  • V. Zwiller
    • 4
  • O. G. Schmidt
    • 1
  1. 1.Institute for Integrative NanosciencesIFW DresdenDresdenGermany
  2. 2.Departement FysicaUniversiteit AntwerpenAntwerpenBelgium
  3. 3.Institute of Semiconductor and Solid State PhysicsJohannes Kepler University LinzLinzAustria
  4. 4.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations