Advertisement

Towards Mobile Embodied 3D Avatar as Telepresence Vehicle

  • Yutaka Tokuda
  • Atsushi Hiyama
  • Takahiro Miura
  • Tomohiro Tanikawa
  • Michitaka Hirose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8011)

Abstract

In this paper, we present mobile embodied 3D avatar to shift a rich experience of avatar from a virtual world to our real life with a new style of telepresence. Conventional telepresence research have focused on the exact re-creation of face-to-face communication at a fixed position in a specialized room, so there have been much less research on a life-sized mobile telepresence system despite many off-the-shelf mobile telepresence robots available. We propose various scalable holographic displays to visualize a life-sized avatar in an actual life. In addition, we introduce architecture to control embodied avatar according to user’s intention by extending popular architecture for a multimodal virtual human, namely SAIBA. Our primitive prototype system was tested with 5 simple avatar animations to embody with a wheeled platform robot and a life-sized transparent holographic display and proved realistic avatar’s movement complying user’s intention and the situation at the remote location of avatar.

Keywords

interaction techniques avatar telepresence telework mobility transparent display platforms and metaphors multimodal interaction SAIBA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Leigh, J., Rawlings, M., Girado, J., Dawe, G., Fang, R., Verlo, A., Khan, M.A., Cruz, A., Plepys, D., Sandin, D.J., DeFanti, T.A.: AccessBot: an Enabling Technology for Telepresence. In: INET 2000 (2000)Google Scholar
  6. 6.
    Nguyen, D.T., Canny, J.: More than Face-to-Face: Empathy Effects of Video Framing. In: Proc. ACM CHI 2009, pp. 423–432 (2009)Google Scholar
  7. 7.
    Canny, J., Paulos, E.: Tele-embodiment and shattered presence: Reconstructing the body for online interaction. In: The Robot in the Garden: Telerobotics and Telepistemology in the Age of the Internet, pp. 276–294 (2000)Google Scholar
  8. 8.
    Zwiers, J., van Welbergen, H., Reidsma, D.: Continuous Interaction within the SAIBA Framework. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 324–330. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Tachi, S., Kawashima, N., Nii, H., Watanabe, K., Minamizawa, K.: TELEsarPHONE: Mutual Telexistence Master-Slave Communication System Based on Retroreflective Projection Technology. SICE Journal of Control, Measurement, and System Integration 1, 335–344 (2011)CrossRefGoogle Scholar
  10. 10.
    Shoji, M., Miura, K., Konno, A.: U-Tsu-Shi-O-Mi: the virtual humanoid you can reach. In: ACM SIGGRAPH 2006 Emerging Technologies, New York (2006)Google Scholar
  11. 11.
    Kim, K., Bolton, J., Girouard, A., Cooperstock, J., Vertegaal, R.: TeleHuman: effects of 3d perspective on gaze and pose estimation with a life-size cylindrical telepresence pod. In: Proc. ACM CHI 2012, pp. 2531–2540 (2012)Google Scholar
  12. 12.
    Paulosand, E., Canny, J.: PRoP: Personal Roving Presence. In: Proc. ACM CHI 1998, pp. 296–303 (1998)Google Scholar
  13. 13.
    Tobita, H., Maruyama, S., Kuzi, T.: Floating avatar: telepresence system using blimps for communication and entertainment. In: ACM CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 541–550 (2011)Google Scholar
  14. 14.
    Hiyama, A., Imai, T., Tanikawa, T., Hirose, M.: Remote Museum Guide using Augmented Reality Vehicle. In: 20th International Conference on Artificial Reality and Telexistence (ICAT 2010), Adelaide (2010)Google Scholar
  15. 15.
    Nakanishi, H., Kato, K., Ishiguro, H.: Zoom Cameras and Movable Displays Enhance Social Telepresence. In: Proc. ACM CHI 2011, Vancouver, pp. 63–72 (2011)Google Scholar
  16. 16.
    Kuster, C., Ranieri, N., Agustina, Z.H., Bazin, B.Z., Sun, C., Popa, T., Gross, M.: Towards Next Generation 3D Teleconferencing Systems. In: DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (2012)Google Scholar
  17. 17.
  18. 18.
    Nishimura, K., Suzuki, Y., Tokuda, Y., Iida, T., Kajinami, T., Tanikawa, T., Hirose, M.: Tree-shaded screen: A Propeller type screen for Public Art. In: Proc. Joint Virtual Reality Conference of EGVE-ICAT-EuroVR, Lyon, pp. 101–104 (2009)Google Scholar
  19. 19.
    Parro, A.R.: DRONE2.0, http://ardrone2.parrot.com/
  20. 20.
  21. 21.
    Tokuda, Y., Nishimura, K., Suzuki, Y., Tanikawa, T., Hirose, M.: Vortex Ring Based Display. In: Proc. IEEE VSMM 2010, Seoul, pp. 51–54 (2010)Google Scholar
  22. 22.
  23. 23.
    Travis, A.R.L., Large, T.A., Emerton, N., Bathiche, S.N.: Wedge Optics in Flat Panel Displays. In: Proc. of the IEEE 101(1), 45–60 (2013)Google Scholar
  24. 24.
    Kishimoto, Y., Abe, J.: A Fast Photochromic Molecule That Colors Only under UV Light. J. Am. Chem. Soc. 131(12), 4227–4229 (2009)CrossRefGoogle Scholar
  25. 25.
    Yagi, A., Imura, M., Kuroda, Y., Oshiro, O.: 360-degree fog projection interactive display. In: ACM SIGGRAPH Asia 2011 Emerging Technologies, Hong Kong (2006)Google Scholar
  26. 26.
  27. 27.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yutaka Tokuda
    • 1
  • Atsushi Hiyama
    • 2
  • Takahiro Miura
    • 2
  • Tomohiro Tanikawa
    • 2
  • Michitaka Hirose
    • 2
  1. 1.Graduate School of EngineeringThe University of TokyoMeguro-kuJapan
  2. 2.Graduate School of Information Science and TechnologyThe University of TokyoBunkyo-kuJapan

Personalised recommendations