Aggregation of Convex Intuitionistic Fuzzy Sets

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 228)


Aggregation of intuitionistic fuzzy sets is studied from the point of view of preserving convexity.We focus on those aggregation functions for IF-sets, that are results of separate aggregation of the membership and of nonmembership functions, that is, the representable aggregation functions. A sufficient and necessary condition for an aggregation function is given in order to fulfil that the aggregation of two IF-sets preserves the convexity of cuts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atanassov, K.: Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia (1983) (in Bulgarian)Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Atanassov, K.: Intuitionistic Fuzzy Sets, Theory and Applications. Physica-Verlag, Heidelberg (1999)CrossRefMATHGoogle Scholar
  4. 4.
    Ammar, E., Metz, J.: On convexity and parametric optimization. Fuzzy Sets and Systems 49, 135–141 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Iglesias, T., Montes, I., Janiš, V., Montes, S.: T-convexity for lattice-valued fuzzy sets. In: Proceedings of the ESTYLF Conference (2012)Google Scholar
  6. 6.
    Janiš, V.: T-norm based cuts of intuitionistic fuzzy sets. Information Sciences 180(7), 1134–1137 (2010)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Janiš, V., Kráľ, P., Renčová, M.: Aggregation operators preserving quasiconvexity. Information Sciences 228, 37–44 (2013)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice-Hall, New Jersey (1995)MATHGoogle Scholar
  10. 10.
    Martinetti, D., Janiš, V., Montes, S.: Cuts of intuitionistic fuzzy sets respecting fuzzy connectives. Information Sciences (2013), doi:
  11. 11.
    Pan, X.: Graded Intuitionistic Fuzzy Convexity with Application to Fuzzy Decision Making. In: Zeng, D. (ed.) Advances in Information Technology and Industry Applications. LNEE, vol. 136, pp. 709–716. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Saminger-Platz, S., Mesiar, R., Dubois, D.: Aggregation operators and Commuting. IEEE Transactions on Fuzzy Systems 15(6), 1032–1045 (2007)CrossRefGoogle Scholar
  13. 13.
    Syau, Y.-R., Lee, E.S.: Fuzzy Convexity with Application to Fuzzy Decision Making. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 5221–5226 (2003)Google Scholar
  14. 14.
    Xu, W., Liu, Y., Sun, W.: On Starshaped Intuitionistic Fuzzy Sets. Applied Mathematics 2, 1051–1058 (2011)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zadeh, L.A.: Fuzzy sets. Inform. and Control 8, 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Zhang, C., Xiao, P., Wang, S., Liu, X. (s,t]-intuitionistic convex fuzzy sets. In: Cao, B.-Y., Wang, G.-J., Guo, S.-Z., Chen, S.-L. (eds.) Fuzzy Information and Engineering 2010. AISC, vol. 78, pp. 75–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Zhang, C., Su, Q., Zhao, Z., Xiao, P.: From three-valued nested sets to interval-valued (or intuitionistic) fuzzy sets. International Journal of Information and Systems Sciences 7(1), 11–21 (2011)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Natural SciencesMatej Bel UniversityBanská BystricaSlovak Republic
  2. 2.Department of Statistics and O.R.University of OviedoAsturiasSpain

Personalised recommendations