Implications Generated by Triples of Monotone Functions

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 228)

Abstract

In this paper we deal with fuzzy implications generated via triples of monotone functions f,g,h. This idea has been presented for the first time at the IPMU 2012 conference, where we have introduced the generating formula and studied some special cases of these fuzzy implications. In our contribution we further develop this concept and study properties of generated fuzzy implications. More precisely,we study how some specific properties of generators f,g,h influence properties of the corresponding fuzzy implications.

We give also some examples of such generated fuzzy implications and examples illustrating the intersection of the system of fuzzy implications generated by this method with known types of generated fuzzy implications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baczyński, M., Jayaram, B.: Fuzzy implications. STUDFUZZ, vol. 231. Springer, Berlin (2008)MATHGoogle Scholar
  2. 2.
    Baczyński, M., Jayaram, B. (S,N)- and R-implications: A state-of-the-art survey. Fuzzy Sets and Systems 159(14), 1836–1859 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Baczyński, M., Jayaram, B.: QL-implications: Some properties and intersections. Fuzzy Sets and Systems 161(2), 158–188 (2010)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Computing 3, 89–100 (1999)CrossRefGoogle Scholar
  5. 5.
    Biba, V., Hliněná, D.: Generated fuzzy implications and known classes of implications. Acta Univ. M. Belii, Ser. Math. 16, 25–34 (2010)MATHMathSciNetGoogle Scholar
  6. 6.
    Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets and Systems 134(2), 209–229 (2003)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bustince, H., Fernandez, J., Sanz, J., Baczyński, M., Mesiar, R.: Construction of strong equality index from implication operators. Fuzzy Sets and Systems 211, 15–33 (2013)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers, Dordrecht (1994)CrossRefMATHGoogle Scholar
  9. 9.
    Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 5, 411–422 (1997)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hájek, P.: Mathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)Google Scholar
  11. 11.
    Hliněná, D., Kalina, M., Král’, P.: Generated implications revisited. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R., et al. (eds.) IPMU 2012, Part II. CCIS, vol. 298, pp. 345–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Hliněná, D., Kalina, M., Král’, P.: Implication functions generated using functions of one variable. In: Baczynski, M., Beliakov, G., Bustince, H., Pradera, A. (eds.) Adv. in Fuzzy Implication Functions. STUDFUZZ, vol. 300, pp. 125–153. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Jayaram, B.: Contrapositive symmetrisation of fuzzy implications-revisited. Fuzzy Sets and Systems 157, 2291–2310 (2006) Google Scholar
  14. 14.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer (2000)Google Scholar
  15. 15.
    Komorníková, M.: Aggregation operators and additive generators. Int. J. Fuzziness, Uncertainty, Fuzziness and Knowledge-Based Systems 0.2, 205–215 (2001)CrossRefGoogle Scholar
  16. 16.
    Mas, M., Monserrat, J., Torrens, M., Trillas, E.: A survey on fuzzy implication functions. IEEE T. Fuzzy Systems 15(6), 1107–1121 (2007)CrossRefGoogle Scholar
  17. 17.
    Massanet, S., Torrens, J.: The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets and Systems 168(1), 47–69 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Information Sciences 181, 2111–2127 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)CrossRefMATHGoogle Scholar
  20. 20.
    Ouyang, Y.: On fuzzy implications determined by aggregation operators. Information Sciences 193, 153–162 (2012)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)MATHGoogle Scholar
  22. 22.
    Smutná, D.: On many valued conjunctions and implications. Journal of Electrical Engineering 50, 8–10 (1999)Google Scholar
  23. 23.
    Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Information Sciences 167(1-4), 193–216 (2004)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80, 111–120 (1996)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. of MathematicsFEEC Brno Uni. of TechnologyBrnoCzech Republic
  2. 2.Faculty of Civil Engineering, Department of MathematicsSlovak University of Technology in BratislavaBratislavaSlovakia
  3. 3.Dept. of Quantitative Methods and Information Systems, Faculty of EconomicsMatej Bel UniversityBanská BystricaSlovakia

Personalised recommendations