# Implications Generated by Triples of Monotone Functions

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 228)

## Abstract

In this paper we deal with fuzzy implications generated via triples of monotone functions f,g,h. This idea has been presented for the first time at the IPMU 2012 conference, where we have introduced the generating formula and studied some special cases of these fuzzy implications. In our contribution we further develop this concept and study properties of generated fuzzy implications. More precisely,we study how some specific properties of generators f,g,h influence properties of the corresponding fuzzy implications.

We give also some examples of such generated fuzzy implications and examples illustrating the intersection of the system of fuzzy implications generated by this method with known types of generated fuzzy implications.

## Preview

### References

1. 1.
Baczyński, M., Jayaram, B.: Fuzzy implications. STUDFUZZ, vol. 231. Springer, Berlin (2008)
2. 2.
Baczyński, M., Jayaram, B. (S,N)- and R-implications: A state-of-the-art survey. Fuzzy Sets and Systems 159(14), 1836–1859 (2008)
3. 3.
Baczyński, M., Jayaram, B.: QL-implications: Some properties and intersections. Fuzzy Sets and Systems 161(2), 158–188 (2010)
4. 4.
De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Computing 3, 89–100 (1999)
5. 5.
Biba, V., Hliněná, D.: Generated fuzzy implications and known classes of implications. Acta Univ. M. Belii, Ser. Math. 16, 25–34 (2010)
6. 6.
Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets and Systems 134(2), 209–229 (2003)
7. 7.
Bustince, H., Fernandez, J., Sanz, J., Baczyński, M., Mesiar, R.: Construction of strong equality index from implication operators. Fuzzy Sets and Systems 211, 15–33 (2013)
8. 8.
Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers, Dordrecht (1994)
9. 9.
Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 5, 411–422 (1997)
10. 10.
Hájek, P.: Mathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)Google Scholar
11. 11.
Hliněná, D., Kalina, M., Král’, P.: Generated implications revisited. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R., et al. (eds.) IPMU 2012, Part II. CCIS, vol. 298, pp. 345–354. Springer, Heidelberg (2012)
12. 12.
Hliněná, D., Kalina, M., Král’, P.: Implication functions generated using functions of one variable. In: Baczynski, M., Beliakov, G., Bustince, H., Pradera, A. (eds.) Adv. in Fuzzy Implication Functions. STUDFUZZ, vol. 300, pp. 125–153. Springer, Heidelberg (2013)
13. 13.
Jayaram, B.: Contrapositive symmetrisation of fuzzy implications-revisited. Fuzzy Sets and Systems 157, 2291–2310 (2006) Google Scholar
14. 14.
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer (2000)Google Scholar
15. 15.
Komorníková, M.: Aggregation operators and additive generators. Int. J. Fuzziness, Uncertainty, Fuzziness and Knowledge-Based Systems 0.2, 205–215 (2001)
16. 16.
Mas, M., Monserrat, J., Torrens, M., Trillas, E.: A survey on fuzzy implication functions. IEEE T. Fuzzy Systems 15(6), 1107–1121 (2007)
17. 17.
Massanet, S., Torrens, J.: The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets and Systems 168(1), 47–69 (2011)
18. 18.
Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Information Sciences 181, 2111–2127 (2011)
19. 19.
Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)
20. 20.
Ouyang, Y.: On fuzzy implications determined by aggregation operators. Information Sciences 193, 153–162 (2012)
21. 21.
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)
22. 22.
Smutná, D.: On many valued conjunctions and implications. Journal of Electrical Engineering 50, 8–10 (1999)Google Scholar
23. 23.
Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Information Sciences 167(1-4), 193–216 (2004)
24. 24.
Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80, 111–120 (1996)