The Consensus Functional Equation in Agreement Theory

  • Juan Carlos Candeal
  • Esteban Induráin
  • José Alberto Molina
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 228)

Abstract

We introduce the concept of the consensus functional equation, for a bivariate map defined on an abstract choice set. This equation is motivated by miscellaneous examples coming from different contexts. In particular, it appears in the analysis of sufficiently robust agreements arising in Social Choice. We study the solutions of this equation, relating them to the notion of a rationalizable agreement rule. Specific functional forms of the solutions of the consensus functional equation are also considered when the choice sets have particular common features. Some extension of the consensus equation to a multivariate context are also explored.

Keywords

Functional equations in two variables Agreement rules in Social Choice 

Mathematics Subject Classification (2010)

91B16 91B14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczél, J.: The associativity equation re-revisited. In: AIP Conf. Proc., vol. 707(1), pp. 195–203 (2004)Google Scholar
  2. 2.
    Alcantud, J.C.R., de Andrés Calle, R., Cascón, J.M.: A unifying model to measure consensus solutions in a society. Math. Comput. Modelling (2012) (to appear), doi 10.1016/j.mcm.2011.12.020Google Scholar
  3. 3.
    Alsina, C., Frank, M.J., Schweizer, B.: Associative functions: triangular norms and copulas. World Scientific Publishing Co. Pte. Ltd., Singapore (2006)Google Scholar
  4. 4.
    Arrow, K.J.: Rational choice functions and orderings. Econometrica 26, 121–127 (1959)Google Scholar
  5. 5.
    Arrow, K.J.: Social choice and individual values. John Wiley and Sons, New York (1963)Google Scholar
  6. 6.
    Beliakov, G., Calvo, T., James, S.: On penalty-based aggregation functions and consensus. In: Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S. (eds.) Consensual Processes. STUDFUZZ, vol. 267, pp. 23–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Birkhoff, G.: Lattice theory, 3rd edn. American Mathematical Society, Providence (1967)MATHGoogle Scholar
  8. 8.
    Bradley, R.: Reaching a consensus. Soc. Choice Welf. 29(4), 609–632 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bustince, H., Barrenechea, E., Calvo, T., James, S., Beliakov, G.: Consensus in multiexpert decision making problems using penalty functions defined over a Cartesian product of lattices. Information Fusion (2011), doi:10.1016/j.inffus.2011.10.002Google Scholar
  10. 10.
    Calvo, T., Mesiar, R., Yager, R.R.: Quantitative weights and aggregation. IEEE Trans. on Fuzzy Systems 12, 62–69 (2004)CrossRefGoogle Scholar
  11. 11.
    Campión, M.J., Candeal, J.C., Catalán, R.G., De Miguel, J.R., Induráin, E., Molina, J.A.: Aggregation of preferences in crisp and fuzzy settings: functional equations leading to possibility results. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 19(1), 89–114 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Candeal, J.C., De Miguel, J.R., Induráin, E., Olóriz, E.: Associativity equation revisited. Publ. Math. Debrecen 51(1-2), 133–144 (1997)MATHMathSciNetGoogle Scholar
  13. 13.
    Candeal, J.C., Induráin, E.: Bivariate functional equations around associativity. Aequat. Math. 84, 137–155 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    Castillo, E., Iglesias, A., Ruiz-Cobo, R.: Functional Equations in Applied Sciences. Elsevier, Amsterdam (2005)MATHGoogle Scholar
  15. 15.
    Cook, W.D., Seiford, L.M.: Priority ranking and consensus formation. Management Science 28, 1721–1732 (1978)CrossRefGoogle Scholar
  16. 16.
    Craigen, R., Páles, Z.: The associativity equation revisited. Aequat. Math. 37, 306–312 (1989)CrossRefMATHGoogle Scholar
  17. 17.
    Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  18. 18.
    García-Ferreira, S., Gutev, V., Nogura, T.: Extensions of 2-point selections. New Zealand J. Math. 38, 1–8 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    García-Lapresta, J.L.: Favoring consensus and penalizing disagreement in group decision making. Journal of Advanced Computational Intelligence and Intelligent Informatics 12, 416–421 (2008)Google Scholar
  20. 20.
    Heitzing, J., Simmons, F.W.: Some chance for consensus: voting methods for which consensus is an equilibrium. Soc. Choice Welf. 38(1), 43–57 (2012)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Ling, C.H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)MathSciNetGoogle Scholar
  22. 22.
    Marichal, J.L.: On the associativity functional equation. Fuzzy Sets and Systems 114(3), 381–389 (2000)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Marichal, J.L., Mathonet, P.: On comparison meaningfulness of aggregation functions. J. Math. Psych. 45, 213–223 (2001)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Mc Morris, F.R., Powers, R.C.: Consensus rules based on decisive families: The case of hierarchies. Math. Social Sci. 57, 333–338 (2009)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Moulin, H.: Axioms for cooperative decision making. Econometric Society Monographs. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  26. 26.
    Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36(1), 48–49 (1950)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Rescher, N.: Some observations on social consensus methodology. Theory and Decision 3(2), 175–179 (1972)CrossRefGoogle Scholar
  28. 28.
    Sen, A.K.: Collective choice and social welfare. Holden-Day, San Francisco (1970)Google Scholar
  29. 29.
    Stupn̆anová, A., Kolesárová: Associative n-dimensional copulas. Kybernetika 47(1), 93–99 (2011)Google Scholar
  30. 30.
    Wagner, C.G.: Consensus for belief functions and related uncertainty measures. Theory and Decision 26(3), 295–304 (1989)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan Carlos Candeal
    • 1
  • Esteban Induráin
    • 2
  • José Alberto Molina
    • 1
  1. 1.Departamento de Análisis EconómicoUniversidad de ZaragozaZaragozaSpain
  2. 2.Departamento de MatemáticasUniversidad Pública de NavarraPamplonaSpain

Personalised recommendations