High-Performance Analog IC Sizing: Advanced Constraint Handling and Search Methods

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 501)

Abstract

Chapter 3 discusses advanced techniques for high performance design optimization. This chapter reviews advanced constraint handling methods and hybrid methods and introduces some popular methods. Practical examples are also provided.

References

  1. 1.
    Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Networks 5(1):96–101CrossRefGoogle Scholar
  2. 2.
    Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer-Verlag, New YorkGoogle Scholar
  3. 3.
    Kennedy J (2006) Swarm intelligence. In Handbook of nature-inspired and innovative computing, Springer, Heidelberg, pp 187–219Google Scholar
  4. 4.
    Fakhfakh M, Cooren Y, Sallem A, Loulou M, Siarry P (2010) Analog circuit design optimization through the particle swarm optimization technique. Analog Integr Circ Sig Process 63(1):71–82CrossRefGoogle Scholar
  5. 5.
    Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2):311–338MATHCrossRefGoogle Scholar
  6. 6.
    Runarsson T, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294CrossRefGoogle Scholar
  7. 7.
    Mallipeddi R, Suganthan P (2010) Ensemble of constraint handling techniques. IEEE Trans Evol Comput 14(4):561–579CrossRefGoogle Scholar
  8. 8.
    Mezura-Montes E, Velázquez-Reyes J, Coello C (2006) Modified differential evolution for constrained optimization. In Proceedings of IEEE congress on evolutionary computation, pp 25–32Google Scholar
  9. 9.
    Wang Y, Cai Z, Guo G, Zhou Y (2007) Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Trans Syst Man Cybern Part B: Cybern 37(3):560–575CrossRefGoogle Scholar
  10. 10.
    Venkatraman S, Yen G (2005) A generic framework for constrained optimization using genetic algorithms. IEEE Trans Evol Comput 9(4):424–435CrossRefGoogle Scholar
  11. 11.
    Tahk M, Sun B (2000) Coevolutionary augmented lagrangian methods for constrained optimization. IEEE Trans Evol Comput 4(2):114–124CrossRefGoogle Scholar
  12. 12.
    Barbosa H (1999) A coevolutionary genetic algorithm for constrained optimization. In Proceedings of the congress on evolutionary computation, pp 1605–1611Google Scholar
  13. 13.
    Liu B, Wang Y, Yu Z, Liu L, Li M, Wang Z, Lu J, Fernández F (2009) Analog circuit optimization system based on hybrid evolutionary algorithms. Integration, VLSI J 42(2):137–148.Google Scholar
  14. 14.
    Tessema B, Yen G (2006) A self adaptive penalty function based algorithm for constrained optimization. In Proceedings of IEEE congress on evolutionary computation, pp 246–253Google Scholar
  15. 15.
    Farmani R, Wright J (2003) Self-adaptive fitness formulation for constrained optimization. IEEE Trans Evol Comput 7(5):445–455CrossRefGoogle Scholar
  16. 16.
    Huang V, Qin A, Suganthan P (2006) Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In Proceedings of IEEE congress on evolutionary computation, pp 17–24Google Scholar
  17. 17.
    Grosan C, Abraham A, Ishibuchi H (2007) Hybrid evolutionary algorithms. Springer, VerlagGoogle Scholar
  18. 18.
    Ganesh K, Punniyamoorthy M (2005) Optimization of continuous-time production planning using hybrid genetic algorithms-simulated annealing. Int J Adv Manuf Technol 26(1):148–154CrossRefGoogle Scholar
  19. 19.
    Hu Z, Su Q, Xiong S, Hu F (2008) Self-adaptive hybrid differential evolution with simulated annealing algorithm for numerical optimization. In Proceedings of IEEE world congress on computational intelligence, pp 1189–1194Google Scholar
  20. 20.
    Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8(1):10–15Google Scholar
  21. 21.
    Kirkpatrick S, Gelatt C Jr (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Lagarias J, Reeds J, Wright M, Wright P (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112–147MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Zahara E, Kao Y (2009) Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36(2):3880–3886CrossRefGoogle Scholar
  24. 24.
    Menchaca-Mendez A, Coello C (2009) A new proposal to hybridize the Nelder-Mead method to a differential evolution algorithm for constrained optimization. In Proceedings of IEEE congress on evolutionary computation, pp 2598–2605Google Scholar
  25. 25.
    Liu B, Fernández F, Gielen G (2010) An accurate and efficient yield optimization method for analog circuits based on computing budget allocation and memetic search technique. In Proceedings of the conference on design, automation and test in Europe, pp 1106–1111Google Scholar
  26. 26.
    Liu B, Fernández F, Gielen G, Castro-López R, Roca E (2009) A memetic approach to the automatic design of high-performance analog integrated circuits. ACM Transactions on Design Automation of Electronic Systems (TODAES) 14(3):1–24Google Scholar
  27. 27.
    Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359Google Scholar
  28. 28.
    Michalewicz Z (1996) Genetic algorithms+ data structures. Springer, New York.Google Scholar
  29. 29.
    Gen M, Cheng R (2000) Genetic algorithms and engineering optimization. Wiley-interscience, New YorkGoogle Scholar
  30. 30.
    Deb K, Agrawal R (1994) Simulated binary crossover for continuous search space. Complex Syst 1(9):115–148MathSciNetGoogle Scholar
  31. 31.
    Zielinski K, Laur R (2006) Constrained single-objective optimization using differential evolution. In Proceedings of IEEE congress on evolutionary computation, pp 223–230Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bo Liu
    • 1
  • Georges Gielen
    • 2
  • Francisco V. Fernández
    • 3
  1. 1.Department of ComputingGlyndwr UniversityWrexham, WalesUK
  2. 2.Department of Elektrotechniek ESAT-MICASKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.IMSE-CNMUniversidad de Sevilla and CSICSevillaSpain

Personalised recommendations