Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

IAPR International Conference on Pattern Recognition in Bioinformatics

PRIB 2013: Pattern Recognition in Bioinformatics pp 91–101Cite as

  1. Home
  2. Pattern Recognition in Bioinformatics
  3. Conference paper
Versatile Sparse Matrix Factorization and Its Applications in High-Dimensional Biological Data Analysis

Versatile Sparse Matrix Factorization and Its Applications in High-Dimensional Biological Data Analysis

  • Yifeng Li24 &
  • Alioune Ngom24 
  • Conference paper
  • 1533 Accesses

  • 13 Citations

Part of the Lecture Notes in Computer Science book series (LNBI,volume 7986)

Abstract

Non-negative matrix factorization and sparse representation models have been successfully applied in high-throughput biological data analysis. In this paper, we propose our versatile sparse matrix factorization (VSMF) model for biological data mining. We show that many well-known sparse models are specific cases of VSMF. Through tuning parameters, sparsity, smoothness, and non-negativity can be easily controlled in VSMF. Our computational experiments corroborate the advantages of VSMF.

Keywords

  • versatile sparse matrix factorization
  • non-negative matrix factorization
  • sparse representation
  • feature extraction
  • feature selection
  • biological processes identification

Download conference paper PDF

References

  1. Alon, U.: Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS 96(12), 6745–6750 (1999)

    CrossRef  Google Scholar 

  2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, 2nd edn., Belmont, MA (2008)

    Google Scholar 

  3. Brunet, J., Tamayo, P., Golub, T., Mesirov, J.: Metagenes and molecular pattern discovery using matrix factorization. PNAS 101(12), 4164–4169 (2004)

    CrossRef  Google Scholar 

  4. Carmona-Saez, P., Pascual-Marqui, R.D., Tirado, F., Carazo, J.M., Pascual-Montano, A.: Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 7, 78 (2006)

    CrossRef  Google Scholar 

  5. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. TPAMI 32(1), 45–55 (2010)

    CrossRef  Google Scholar 

  6. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, New York (2010)

    CrossRef  MATH  Google Scholar 

  7. Hu, Z.: The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96 (2006)

    Google Scholar 

  8. Kim, H., Park, H.: Sparse non-negatice matrix factorization via alternating non-negativity-constrained least aquares for microarray data analysis. SIAM J. Matrix Analysis and Applications 23(12), 1495–1502 (2007)

    Google Scholar 

  9. Kim, P., Tidor, B.: Subsystem identification through dimensionality reduction of large-scale gene expression data. Genome Research 13, 1706–1718 (2003)

    CrossRef  Google Scholar 

  10. Lee, D.D., Seung, S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    CrossRef  Google Scholar 

  11. Lee, D., Seung, S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562. MIT Press (2001)

    Google Scholar 

  12. Li, Y., Ngom, A.: Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data. In: BIBM, pp. 438–443. IEEE Press, Piscataway (2010)

    Google Scholar 

  13. Li, Y., Ngom, A.: A new kernel non-negative matrix factorization and its application in microarray data analysis. In: CIBCB, pp. 371–378. IEEE Press, Piscataway (2012)

    Google Scholar 

  14. Li, Y., Ngom, A.: The non-negative matrix factorization toolbox for biological data mining. BMC Source Code for Biology and Medicine 8, 10 (2013)

    CrossRef  Google Scholar 

  15. Li, Y., Ngom, A.: Sparse representation approaches for the classification of high-dimensional biological data. BMC Systems Biology (in press, 2013)

    Google Scholar 

  16. Ochs, M., Fertig, E.: Matrix factorization for transcriptional regulatory network inference. In: CIBCB, pp. 387–396. IEEE Press, Piscataway (2012)

    Google Scholar 

  17. Ochs, M., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., Godwin, A.: Detection of treatment-induced changes in signaling pathways in sastrointestinal stromal tumors using transcripttomic data. Cancer Res. 69(23), 9125–9132 (2009)

    CrossRef  Google Scholar 

  18. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society - Series B: Statistical Methodology 67(2), 301–320 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Computer Science, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada

    Yifeng Li & Alioune Ngom

Authors
  1. Yifeng Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alioune Ngom
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. School of Computer Science, University of Windsor, 5115 Lambton Tower, 401 Sunset Avenue, N9B 3P4, Windsor, ON, Canada

    Alioune Ngom

  2. I3S Research Lab., Nice Sophia Antipolis University, 06903, Sophia Antipolis Cedex, France

    Enrico Formenti

  3. LERIA - Faculté des Sciences, Université d’Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 01, France

    Jin-Kao Hao

  4. School of Electronics and Information Engineering, Tongji University, 201804, Shanghai, China

    Xing-Ming Zhao

  5. Institute for Computing and Information Sciences, Radboud University, 6500 GL, Nijmegen, The Netherlands

    Twan van Laarhoven

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Ngom, A. (2013). Versatile Sparse Matrix Factorization and Its Applications in High-Dimensional Biological Data Analysis. In: Ngom, A., Formenti, E., Hao, JK., Zhao, XM., van Laarhoven, T. (eds) Pattern Recognition in Bioinformatics. PRIB 2013. Lecture Notes in Computer Science(), vol 7986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39159-0_9

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-39159-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39158-3

  • Online ISBN: 978-3-642-39159-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.239.152.207

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.