Modeling Humain Behavior in Space and Time Using Mobile Phone Data

Part of the Intelligent Systems Reference Library book series (ISRL, volume 52)


In this chapter we present an overview of the main sources of data coming from mobile phone tracking and models allowing the use of these data. Several issues due to the quality of mobile phone data are explained. In particular, we provide a taxonomy of mobile phone data imprecision and suggest new metrics to estimate the basic properties of displacements are defined: mobility intensity (speed-like measure) and uncertainty.


mobile phone data uncertainty models human behavior human mobility 


  1. 1.
    Ahas, R.: Mobile positioning in mobility studies. In: Büscher, M., Urry, J., Witchger, K. (eds.) Mobile Methods. Routledge. London (2010)Google Scholar
  2. 2.
    Gonzalez, M.C, Hidalgo, C.A, Barabasi, A.L.: Understanding individual human mobility patterns. Nature, 453, 779–782 (2008)Google Scholar
  3. 3.
    Becker, R.A., Caceres, R., Hanson, K., Loh J.M., Urbanek, S., Varshavsky, J., Volinsky, C.: A tale of one city: using cellular network data for urban planning. In: Proceedings of IEEE Pervasive Computing (2011)Google Scholar
  4. 4.
    Reades, J., Calabrese, F., Sevtsuk, A., Ratti, C.: Cellular census: explorations in urban data collection. IEEE Pervasive Comput. 6, 30–38 (2007)Google Scholar
  5. 5.
    Olteanu Raimond, A.M., Trasarti, R., Couronne, T., Giannotti, F., Nanni, M., Smoreda, Z., Ziemlicki, C.: GSM data analysis for tourism application. In: Proceedings of 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Envi-ronmental Sciences (2011)Google Scholar
  6. 6.
    Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008)Google Scholar
  7. 7.
    Licoppe, C., Diminescu, D., Smoreda, Z., Ziemlicki, C.: Using mobile phone geolocalisation for socio-geographical analysis of coordination, urban mobilities, and social integration patterns. Tijdschrift voor Economische en Sociale Geografie 99, 584–601 (2008)Google Scholar
  8. 8.
    Stoica, A., Prieur, C.: Structure of neighborhoods in a large social network. In: Proceedings of IEEE International Conference on Social, Computing (2009)Google Scholar
  9. 9.
    Couronné, T., Stoica, A., Beuscart, J.S.: Online social network popularity evolution: an Additive Mixture Model. In: Proceedings of International Conference on Advances in Social Networks Analysis and Mining (2010)Google Scholar
  10. 10.
    Sevtsuk, A., Ratti, C.: Does urban mobility have a daily routine? Learning from the Aggregate Data of Mobile Networks. J. Urb. Tech. 17, 41–60 (2010)Google Scholar
  11. 11.
    Olteanu Raimond, A.M., Couronné, T., Fen-Chong, J., Smoreda, Z.: Le Paris des visiteurs, qu’en disent les téléphones mobiles ? Inférence des pratiques spatiales et fréquentations des sites touristiques en Ile-de-France. Revue Internationale de la Géomantique (to appear in septembre), (2012)Google Scholar
  12. 12.
    Ahas, R., Aasa, A., Roose, A., Mark, Ü., Silm, S.: Evaluating passive mobile positioning data for tourism surveys. An Estonian case study. Tourism Manag. 29, 469–486 (2008)Google Scholar
  13. 13.
    Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R., Ratti, C.: Activity-aware map:identifying human daily activity pattern using mobile phone data. In: Proceedings of International Conference on Pattern Recognition, Workshop on Human Behavior Understanding, pp. 14–25. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Calabrese, F., Di Lorenzo, G., Ratti, C.: Human mobility prediction based on individual and collective geographical preferences. In: Proceedings of 13th International IEEE Conference on Intelligent Transportation Systems (2010)Google Scholar
  15. 15.
    Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility, Sci. 327, 1018–1021 (2010)Google Scholar
  16. 16.
    Asakura, Y., Takamasa, I.: Analysis of tourist behavior based on the tracking data collected using a mobile communication instrument. Transp. Res. A 41, 684–690 (2007)Google Scholar
  17. 17.
    Blondel, V., Deville, P., Morlot, F., Smoreda, Z., Van Dooren, P., Ziemlicki, C.: Voice on the border: do cellphones redraw the maps?. Paris Tech. Rev. 15, (2011)
  18. 18.
    Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M., Claxton, R., Strogatz, S.H.: Redrawing the map of Great Britain from a network of human interactions. PLoS ONE 5, e14248 (2010)Google Scholar
  19. 19.
    Morlot, F., Elayoubi, S.E., Baccelli, F.: An interaction-based mobility model for dynamic hot spot analysis. In: Proceedings of IEEE Infocom (2010)Google Scholar
  20. 20.
    Spaccapietra, S., Parent, C., Damiani, M.L., De Macedo, J.A., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data Knowl. Eng. 65, 126–146 (2008)Google Scholar
  21. 21.
    Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, A.O.: A Clustering-based approach for discovering interesting places in trajectories. In: Proceedings of ACMSAC ACM Press, New York (2008)Google Scholar
  22. 22.
    Yan, Z., Parent, C., Spaccapietra, S., Chakraborty, D.: A hybrid model and computing platform for spatio-semantic trajectories. In: ESWC, The semantic web: Research and Applications, 7th Extended Semantic Web Conference, Heraklion, Greece, Springer Heidelberg, pp. 60–75 (2010)Google Scholar
  23. 23.
    Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., Wrobel, S.: From movement tracks through events to places: extracting and characterizing signicant places from mobility data. In: Proceedings of IEEE Visual Analytics, Science and Technology, pp. 161–170 (2011)Google Scholar
  24. 24.
    Zimmermann, M., Kirste, T., Spiliopoulou, M.: Finding stops in error-prone trajectories of moving objects with time-based clustering, intelligent interactive assistance and mobile multimedia. Computing. 53, 275–286 (2009)Google Scholar
  25. 25.
    Spinsanti, L., Celli, F., Renso, C.: Where you stop is who you are: understanding peo-ples activities, In: Proceedings of 5th BMI, Workshop on Behavior Monitoring and In-terpretation, pp. 38–52 Germany (2010)Google Scholar
  26. 26.
    Calabrese, F., Pereira, F.C., Lorenzo, G.D., Liu, L.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE International Conference on Pervasive Computting (2010)Google Scholar
  27. 27.
    Andrienko, G., Andrienko, N., Olteanu Raimond, A.M., Symanzik, J., Ziemlicki, C.: Towards extracting semantics from movement data by visual analytics approaches. In: Proceedings of GIScience Workshop on GeoVisual Analytics, Time to Focus on Time in Columbus OH, to appear (2012)Google Scholar
  28. 28.
    Smoreda, Z., Olteanu Raimond, A.M., Couronne, T.: Spatio-temporal data from mobile phones for personal mobility assessment. In: Proceedings of 9th International Conference on Transport Survey Methods: Scoping the Future while Staying on Track, Termas de Puyehue, Chili (2011)Google Scholar
  29. 29.
    Wang, H., Calabrese, F., Di Lorenzo, G., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: Proceedings of 13th IEEE Conference Intelligent Transportation Systems, pp. 318–323 (2010)Google Scholar
  30. 30.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Duckham, M., Kulik, L., Birtley, A.: A spatiotemporal model of strategies and counter-strategies for location privacy protection. In: Proceedings of the Fourth International Conference on Geographic Information Science. Schloss Münster, Germany (2006)Google Scholar
  32. 32.
    Reades, J.: People, places and privacy. In: Proceedings of International Workshop Social Positioning Method, Estonia (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.SENSe Orange LabsNetworks and CarriersIssy-les-Moulineaux cedex9France

Personalised recommendations