Modelling the Joint Effect of Social Determinants and Peers on Obesity Among Canadian Adults

  • Philippe J. GiabbanelliEmail author
  • Piper J. Jackson
  • Diane T. Finegood
Part of the Intelligent Systems Reference Library book series (ISRL, volume 52)


A novel framework for modelling trends in obesity is presented. The framework, integrating both Fuzzy Cognitive Maps (FCMs) and social networks, is applied to the problem of obesity prevention using knowledge shared through social connections. The capability of FCMs to handle a large number of relevant factors is used here to preserve domain expertise in the model. Model details and design decisions are presented along with results that suggest that the type of social network structure impacts the effectiveness of knowledge transfer.


Social Network Nutrition Knowledge Inverse Gaussian Distribution Meal Planning Weight Stigma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Public Health Agency of Canada and the Canadian Institute for Health Information: Obesity in Canada (2011)Google Scholar
  2. 2.
    Ogden, C., Carroll, M.: Prevalence of overweight, obesity, and extreme obesity among adults: United-states, trends 1960–1962 through 2007–2008. National Center for Health, Statistics (June 2010)Google Scholar
  3. 3.
    Levi, J., Vinter, S., Richardson, L., Laurent, R.S., Segal, L.: F as in fat: how obesity policies are failing in america. Trust for America’s health. Robert Wood Johnson Foundation (July 2008)Google Scholar
  4. 4.
    Finegood, D.: The complex systems science of obesity. In: The oxford handbook of the social science of, obesity, pp. 208–236 (2011)Google Scholar
  5. 5.
    Kumanyika, S., Parker, L., Sim, L., (eds.): Defining the problem: the importance of taking a systems perspective. In: Bridging the evidence gap in obesity prevention: a framework to inform decision making. The national academies press (2010)Google Scholar
  6. 6.
    Kolata, G.: Find yourself packing it on? blame friends. The New York Times (July 2007)Google Scholar
  7. 7.
    Thompson, C.: Are your friends making you fat? The New York Times (September 2009)Google Scholar
  8. 8.
    Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357(4), 370–379 (July 2007)CrossRefGoogle Scholar
  9. 9.
    Hammond, R.A.: Social influence and obesity. Curr. Opin. Endocrinol. Diabetes Obes. 17, 467–471 (2010)CrossRefGoogle Scholar
  10. 10.
    Smith, K., Christakis, N.: Social networks and health. Ann. Rev. Soc. 34, 405–429 (2008)CrossRefGoogle Scholar
  11. 11.
    Rush, W., Biltz, G., Pantelidis, L., Kim, L., Ogata, C., Muneichi, S.: An exploration of the influence of health related risk factors using cellular automata. Tech. rep (New England Complex Systems Institute) (2003)Google Scholar
  12. 12.
    Bahr, D., Browning, R., Wyatt, H., Hill, J.: Exploiting social networks to mitigate the obesity epidemic. Obesity 17(4), 723–728 (2009)CrossRefGoogle Scholar
  13. 13.
    Giabbanelli, P.J., Alimadad, A., Dabbaghian, V., Finegood, D.T.: Modeling the influence of social networks and environment on energy balance and obesity. Obes. Rev. 11(Suppl. 1), 65 (2010)Google Scholar
  14. 14.
    Giabbanelli, P.J., Alimadad, A., Dabbaghian, V., Finegood, D.T.: Modeling the influence of social networks and environment on energy balance and obesity. J. Comput. Sci. 3, 17–27 (2012)CrossRefGoogle Scholar
  15. 15.
    Ruths, D.: Social network modeling of lifestyle behaviors and obesity. In: 2nd National Obesity Summit (2011)Google Scholar
  16. 16.
    Karanfil, O., Moore, T., Finley, P., Brown, T., Zagonel, A., Glass, R.: A multi-scale paradigm to design policy options for obesity prevention: exploring the integration of individual-based modeling and system dynamics. In: Proceedings of the 29th International Conference of the System Dynamics Society (June 2011)Google Scholar
  17. 17.
    Hill, A.: Social and psychological factors in obesity. In: Obesity: Science to Practice, pp. 347–366. Wiley-Blackwell (2009)Google Scholar
  18. 18.
    Giabbanelli, P.J., Tornsney-Weir, T., Mago., V.K.: A fuzzy cognitive map of the psychosocial determinants of obesity. Appl. Soft Syst. 12(12):3711–3724 (2012)Google Scholar
  19. 19.
    Giabbanelli, P.J.: A novel framework for complex networks and chronic diseases. In: Proceedings of the third workshop on complex networks (2012)Google Scholar
  20. 20.
    Pratt, S.F., Giabbanelli, P.J., Jackson, P., Mago, V.K.: Rebel with many causes: a computational model of insurgency. In: Proceedings of the IEEE International Conference on Intelligence and Security Informatics (2012)Google Scholar
  21. 21.
    Giles, B., Findlay, C., Haas, G., LaFrance, B., Laughing, W., Pembleton, S.: Integrating conventional science and aboriginal perspectives on diabetes using fuzzy cognitive maps. Soc Sci Med 64(3), 562–576 (2007)CrossRefGoogle Scholar
  22. 22.
    Mago, V., Morden, H., Fritz, C., Wu, T., Namazi, S., Geranmayeh, P., Chattopadhyay, R., Dabbaghian, V.: Analyzing the impact of social factors on homelessness: A fuzzy cognitive map approach. BMC Med. Inform. Decis. Mak. (2013)Google Scholar
  23. 23.
    Tsadiras, A.K., Kouskouvelis, I., Margaritis, K.G.: Using fuzzy cognitive maps as a decision support system for political decisions. Lecture Notes in Computer Science 2563, 291–301 (2003)CrossRefGoogle Scholar
  24. 24.
    Neocleous, C.C., Schizas, C.N.: Application of fuzzy cognitive maps to the political-economic problem of cyprus. In: Proceedings of the International Conference on Fuzzy Sets and Soft Computing in Economics and, Finance, pp. 340–349 (2004)Google Scholar
  25. 25.
    Glykas, M., (ed.): Fuzzy cognitive maps: advances in theory, methodologies, tools and applications. Studies in fuzziness and soft Computing. Springer (2010)Google Scholar
  26. 26.
    Li, Z.: Introduction. In: Fuzzy chaotic systems, pp. 1–11. Springer (2006)Google Scholar
  27. 27.
    Edmonds, B., Moss, S.: From kiss to kids—an ’anti-simplistic’ modelling approach. Lecture Notes in Computer Science 3415, 130–144 (2005)CrossRefGoogle Scholar
  28. 28.
    Edmonds, B.: Simplicity is not truth-indicative, pp. 02–99. CPM, Report (2002)Google Scholar
  29. 29.
    Vandenbroeck, I., Goossens, J., Clemens, M.: Foresight tackling obesities: future choices-building the obesity system map. Government Office for Science, UK Governments Foresight Programme (2007)Google Scholar
  30. 30.
    Giabbanelli, P.J., Torsney-Weir, T., Finegood, D.T.: Building a system dynamics model of individual energy balance related behaviour. Can. J. Diab. 35(2), 201 (2011)CrossRefGoogle Scholar
  31. 31.
    Finegood, D.T., Merth, T.D., Rutter, H.: Implications of the foresight obesity system map for solutions to childhood obesity. Obesity 18, S13–S16 (2010)CrossRefGoogle Scholar
  32. 32.
    Klohe-Lehman, D.M., Freeland-Graves, J., Anderson, E.R., McDowell, T., Clarke, K.K., Hanss-Nuss, H., Cai, G., Puri, D., Milani, T.J.: Nutritionknowledge is associated with greater weight loss in obese and overweight low-income mothers. J. Am. Diet. Assoc. 106(1), 65–65 (2006)CrossRefGoogle Scholar
  33. 33.
    Wardle, J., Parmenter, K., Waller, J.: Nutrition knowledge and food intake. Appetite 34, 269–275 (2000)CrossRefGoogle Scholar
  34. 34.
    McGinn, A.P., Evenson, K.R., Herring, A.H., Huston, S.L., Rodriguez, D.A.: Exploring associations between physical activity and perceived and objective measures of the built environment. J. Pub. Health 84(2), 162–184 (2007)Google Scholar
  35. 35.
    Schutzer, K.A., Graves, B.S.: Barriers and motivations to exercise in older adults. Preven. Med. 39(5), 1056–1061 (2004)CrossRefGoogle Scholar
  36. 36.
    Statistics Canada: annual demographic estimates: Canada, provinces and territories. Catalogue (91–215-X) (2010)Google Scholar
  37. 37.
    Booth, F., Chakravarthy, M.: Cost and consequences of sedentary living: New battleground for an old enemy. Presidents Council on Physical Fitness and Sports Research Digest 3(16) (2002).Google Scholar
  38. 38.
    Food and agriculture organization: human energy requirements. Report, joint FAO/WHO/UNU expert consultation (2004)Google Scholar
  39. 39.
    Bouchard, C.: The magnitude of the energy imbalance in obesity is generally underestimated. Int. J. Obes. 32, 879–880 (2008)CrossRefGoogle Scholar
  40. 40.
    Swinburn, B.A., Sacks, G., Lo, S.K., Westerterp, K.R., Rush, E.C., Rosenbaum, M., Luke, A., Schoeller, D.A., DeLany, J.P., Butte, N.F., Ravussin, E.: Estimating the changes in energy flux that characterize the rise in obesity prevalence. Am J Clin. Nutr. 89, 1723–1728 (2009)CrossRefGoogle Scholar
  41. 41.
    Stephens, T., Dulberg, C., Joubert, N.: La sante mentale de la population canadienne: une analyse exhaustive. Maladies chroniques au Canada 20(3), 131–140 (1999)Google Scholar
  42. 42.
    Beck, C.A., Patten, S.B., Williams, J.V., Wang, J.L., Currie, S.R., Maxwell, C.J., El-Guebaly, N.: Antidepressant utilization in canada. Soc Psychiatry Psychiatr Epidemiol 40, 799–807 (2005)CrossRefGoogle Scholar
  43. 43.
    Statistics Canada: Health indicator profile, two year period estimates, by age group and sex, canada, provinces, territories, health regions, (2011 boundaries) and peer groups. CANSIM Table 105–0502, (2011)Google Scholar
  44. 44.
    MacLellan, D.L., Taylor, J.P., Til, L.V., Sweet, L.: Measured weights in pei adults reveal higher than expected obesity rates. Revue canadienne de sante publique 95(3), 174–178 (2004)Google Scholar
  45. 45.
    Axelrod, R.: The dissemination of culture: a model with local convergence and global polarization. J. Conflict Resolut. 41(2), 203–226 (1997)CrossRefGoogle Scholar
  46. 46.
    Giabbanelli, P.J., Peters, J.G.: Complex networks and epidemics. Technique et Science Informatiques 30, 181–212 (2011)CrossRefGoogle Scholar
  47. 47.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Li, L., Alderson, D., Tanaka, R., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: Definition, properties, and implications (extended version) (Oct 2005)Google Scholar
  49. 49.
    Erdos, P., Renyi, A.: On random graphs i. Publicationes Mathematicae 6, 290–297 (1959)MathSciNetGoogle Scholar
  50. 50.
    Comellas, F., Miralles, A.: Modeling complex networks with self-similar outerplanar unclustered graphs. Physica A: Stat. Mech. Appl. 388, 2227–2233 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Giabbanelli, P.: The small-world property in networks growing by active edges. Adv. Complex Syst. 14(6), 853–869 (2011)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Giabbanelli, P.J.: Self-improving immunization policies for complex networks. Masters thesis, Simon Fraser University (2009)Google Scholar
  53. 53.
    Barriere, L., Comellas, F., Dalfo, C.: Deterministic hierarchical networks. Preprint Universitat Politecnica de Catalunya (2006)Google Scholar
  54. 54.
    Boero, R., Squazzoni, F.: Does empirical embeddedness matter? methodological issues on agent-based models for analytical social science. J. Artif. Soc. Soc. Simul. 8(4) (2005)Google Scholar
  55. 55.
    Schnettler, S.: A structured overview of 50 years of small-world research. Soc. Netw. 21, 165–178 (2009)CrossRefGoogle Scholar
  56. 56.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu Rev Sociol 27, 415–444 (2001)CrossRefGoogle Scholar
  57. 57.
    Sheeran, P.: Intention-behavior relations: a conceptual and empirical review. Eur Rev. Soc. Psychol. 12(1), 1–36 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Philippe J. Giabbanelli
    • 1
    • 2
    Email author
  • Piper J. Jackson
    • 1
    • 3
  • Diane T. Finegood
    • 2
  1. 1.MoCSSy Program, Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) CentreSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Kinesiology and Biomedical PhysiologySimon Fraser UniversityBurnabyCanada
  3. 3.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations