The Difference of User Perception between Similarity and Dissimilarity Judgments

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8024)


The similarity and dissimilarity is a corresponding relationship which is the base of cognitive judgments. The main purpose of this paper is to study the user perception by using similarity judgments. In this study, fifteen innovative products are used as the stimuli which divided into three groups: global, creative and local products. A total of 139 student volunteers participated in the various phases of the study. The feature measures are used to collect data under three different experiments: similarity judgment by random, similarity judgment by order, and dissimilarity judgment by random. In addition, the paper proposed an approach to confirm the effectiveness of collecting data. Then, MDS analysis was used to explore the difference of user perception between similarity and dissimilarity judgments. The results provide designers with a valuable reference for designing innovative products.


multidimensional scaling INDSCAL similarity dissimilarity product design 


  1. 1.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications, 2nd edn. Springer, New York (2005)Google Scholar
  2. 2.
    Boztepe, S.: User value: Competing Theories and Models. International Journal of Design 1(2), 55–63 (2007)Google Scholar
  3. 3.
    Carroll, J.D., Arabie, P.: Multidimensional Scaling. Annual Review of Psychology 31, 607–649 (1980)CrossRefGoogle Scholar
  4. 4.
    Clore, G.L., Huntsinger, J.R.: How Emotions Inform Judgment and Regulate Thought. Trends Cogn. Sci. 11(9), 393–399 (2007)CrossRefGoogle Scholar
  5. 5.
    Navarro, D.J., Perfors, A.F.: Similarity, Feature Discovery, and the Size Principle. Acta Psychologica 133(3), 256–268 (2010)CrossRefGoogle Scholar
  6. 6.
    Davenport, J., Keane, M.T.: Similarity & Structural Alignment: You can have one without the other. In: Hahn, H., Stoness, S.C. (eds.) Twenty-First Annual Conference of the Cognitive Science Society, pp. 132–137. Lawrence Erlbaum Associates, Hillsdale (1999)Google Scholar
  7. 7.
    Desmet, P.M.A., Hekkert, P.: Framework of Product Experience. International Journal of Design 1(1), 57–66 (2007)Google Scholar
  8. 8.
    Hahn, U., Chater, N., Richardson, L.B.: Similarity as Transformation. Cognition 87, 1–32 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gentner, D., Markman, A.B.: Structural Alignment in Comparison: No Difference Without Similarity. Psychological Science 5(3), 152–158 (1994)CrossRefGoogle Scholar
  10. 10.
    Goldstone, R.L., Medin, D.L., Gentner, D.: Relational Similarity and the Nonindependence of Features in Similarity Judgments. Cognitive Psychology 23, 222–262 (1991)CrossRefGoogle Scholar
  11. 11.
    Goldstone, R.L.: Similarity, Interactive Activation, and Mapping. Journal of Experimental Psychology: Learning, Memory, and Cognition 20, 3–28 (1994)CrossRefGoogle Scholar
  12. 12.
    Goldstone, R.L.: Hanging Together: A Connectionist Model of Similarity. In: Grainger, J., Jacobs, A.M. (eds.) Localist Connectionist Approaches to Human Cognition, pp. 283–325. Lawrence Erlbaum Associates, Mahwah (1998)Google Scholar
  13. 13.
    Green, P.E., Rao, V.R.: Applied Multidimensional Scaling: A Comparison of Approaches and Algorithms. Holt, Rinehart and Winston, New York (1972)Google Scholar
  14. 14.
    Heit, E.: Features of Similarity and Category-Based Induction. In: Interdisciplinary Workshop on Categorization and Similarity, pp. 115–121. University of Edinburgh (1997)Google Scholar
  15. 15.
    Hsu, C.H., Chang, S.H., Lin, R.: A Design Strategy for Turning Local Culture into Global Market Products. Kansei Engineering International Journal 12(2) (accepted, 2013)Google Scholar
  16. 16.
    Hsu, C.H., Chang, S.H., Lin, R.: A Design Strategy for Turning Local Culture into Global Market Products. In: International Conference on Kansei Engineering and Emotion Research 2012, pp. 124–131. National Cheng Kung University, Tainan (2012)Google Scholar
  17. 17.
    Joan, M.L.: Priming Effects on Product Judgments: A Hemispheric Interpretation. Journal of Consumer Research 16, 76–86 (1989)CrossRefGoogle Scholar
  18. 18.
    Johnson, M.D.: Consumer Similarity Judgments: A Test of the Contrast Model. Psychology & Marketing 3(1), 47–60 (1986)CrossRefGoogle Scholar
  19. 19.
    Johnson, M.D., Puto, C.P.: A Review of Consumer Judgment and Choice. In: Houston, M.J. (ed.) Review of Marketing, pp. 236–292. American Marketing Association, Chicago (1987)Google Scholar
  20. 20.
    Johnson, M.D., Lehmann, D.R., Horne, D.R.: The Effects of Fatigue on Judgments of Interproduct Similarity. International Journal of Research in Marketing 7, 35–43 (1990)CrossRefGoogle Scholar
  21. 21.
    Johnson, M.D., Fomell, C.: A Framework for Comparing Customer Satisfaction Across Individuals and Product Categories. Journal of Economic Psychology 12(2), 267–286 (1991)CrossRefGoogle Scholar
  22. 22.
    Kim, J., Novemsky, N., Dhar, R.: Adding Small Differences Can Increase Similarity and Choice. Psychological Science 24, 225–229 (2013)CrossRefGoogle Scholar
  23. 23.
    Larkey, L.B., Markman, A.B.: Processes of Similarity Judgment. Cognitive Science 29, 1061–1076 (2005)CrossRefGoogle Scholar
  24. 24.
    Lin, R., Lin, C.Y., Wong, J.: An Application of Multidimensional Scaling in Product Semantics. International Journal of Industrial Ergonomics 18, 193–204 (1996)CrossRefGoogle Scholar
  25. 25.
    Lin, R., Lin, P.C., Ko, K.J.: A Study of Cognitive Human Factors in Mascot Design. International Journal of Industrial Ergonomics 23, 107–122 (1999)CrossRefGoogle Scholar
  26. 26.
    Lin, R.: Transforming Taiwan Aboriginal Cultural Features into Modern Product Design: A Case Study of a Cross-cultural Product Design Model. International Journal of Design 1(2), 47–55 (2007)Google Scholar
  27. 27.
    Lin, R., Lin, C.L.: From Digital Archive to E-Business – A Case Study of Turning “Art” to “E-Business”. In: 2010 International Conference on E-Business. Athens (2010)Google Scholar
  28. 28.
    Lin, R., Chen, C.T.: A Discourse on the Construction of a Service Innovation Model: Focus on the Cultural and Creative Industry Park. In: Ifinedo, P. (ed.) E-BUSINESS – Application and Global Acceptance, pp. 119–136. InTech, Croatia (2012)Google Scholar
  29. 29.
    Medin, D.L.: Concepts and Conceptual Structure. American Psychologist 44, 1469–1481 (1989)CrossRefGoogle Scholar
  30. 30.
    Medin, D.L., Goldstone, R.L., Gentner, D.: Similarity Involving Attributes and Relations: Judgments of Similarity and Difference Are Not Inverses. Psychological Science 1, 64–69 (1990)CrossRefGoogle Scholar
  31. 31.
    Medin, D.L., Goldstone, R.L., Markman, A.B.: Comparison and Choice: Relations between Similarity Processes and Decision Processes. Psychonomic Bulletin and Review 2, 1–19 (1995)CrossRefGoogle Scholar
  32. 32.
    Meyer, D.E., Schvaneveldt, R.W.: Meaning, Memory Structure, and Mental Processes. In: Coffer, C.N. (ed.) The Structure of Human Memory, pp. 54–89. Freeman, San Francisco (1975)Google Scholar
  33. 33.
    Murphy, G.L., Medin, D.L.: The Role of Theories in Conceptual Coherence. Psychological Review 92, 289–316 (1985)CrossRefGoogle Scholar
  34. 34.
    Navarro, D.J., Lee, M.D.: Combining Dimensions and Features in Similarity-based Representations. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 67–74. MIT Press, Cambridge (2003)Google Scholar
  35. 35.
    Navarro, D.J., Griffiths, T.L.: Latent Features in Similarity Judgments: A Nonparametric Bayesian Approach. Neural Computation 20(11), 2597–2628 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Norman, D.A.: Emotional Design: Why We Love (or Hate) Everyday Things. Basic, New York (2004)Google Scholar
  37. 37.
    Rao, V.R., Katz, R.: Alternative Multidimensional Scaling Methods for Large Stimulus Sets. Journal of Marketing Research 8, 488–494 (1971)CrossRefGoogle Scholar
  38. 38.
    Singh, R., YanHo, S.: Attitudes and Attraction: A New Test of the Attraction, Repulsion and Similarity-dissimilarity Asymmetry Hypotheses. British Journal of Social Psychology 39(2), 197–211 (2000)CrossRefGoogle Scholar
  39. 39.
    Shepard, R.N.: The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function: Part I. Psychometrika 27, 125–140 (1962a)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Shepard, R.N.: The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function: Part II. Psychometrika 27, 219–246 (1962b)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Shepard, R.N.: Representation of Structure in Similarity Data: Problems and Prospects. Psychometrika 39, 373–421 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Shepard, R.N., Arabie, P.: Additive Clustering: Representation of Similarities as Combinations of Discrete Overlapping Properties. Psychological Review 86, 87–123 (1979)CrossRefGoogle Scholar
  43. 43.
    Tversky, A.: Features of Similarity. Psychological Review 84, 327–352 (1977)CrossRefGoogle Scholar
  44. 44.
    Tversky, A., Gati, I.: Studies of Similarity. In: Rosch, E., Lloyed, B. (eds.) Cognition and Categorization, pp. 79–98. Erlbaum, Hillsdale (1978)Google Scholar
  45. 45.
    Vanpaemel, W., Verbeemen, T., Dry, M., Verguts, T., Storms, G.: Geometric and Featural Representations in Semantic Concepts. Memory & Cognition 38(7), 962–968 (2010)CrossRefGoogle Scholar
  46. 46.
    Zeigenfuse, M.D., Lee, M.D.: Finding the Features that Represent Stimuli. Acta Psychologica 133(3), 283–295 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Applied ArtsNational Chiao Tung UniversityHsinchu CityTaiwan
  2. 2.Graduate School of Creative Industry DesignNational Taiwan University of ArtsNew Taipei CityTaiwan

Personalised recommendations