Advertisement

Gigaseal Formation

  • Majid MalboubiEmail author
  • Kyle Jiang
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

To have a good understanding of interactions and forces in gigaseal formation it is necessary to have a close look at the glass and membrane structures.

Keywords

Glass Surface Fuse Quartz Membrane Patch Sodium Oxide Patch Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sakmann B, Neher E (2009) Single-channel recording, 2nd edn. Springer, Vienna 978-1-4419-1230-5Google Scholar
  2. 2.
    Lodish H et al (2007) Molecular cell biology. W.H.Freeman & Co Ltd, New YorkGoogle Scholar
  3. 3.
    Alberts B et al (2008) Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  4. 4.
    Guyton AC, Hall JE (2000) Text book of medical physiology. W.B. Saunders company, London, 0-7216-8677-XGoogle Scholar
  5. 5.
    Nagarah JM et al (2010) Batch fabrication of high-performance planar patch-clamp devices in quartz. Adv Mat 22:4622–4627CrossRefGoogle Scholar
  6. 6.
    Priel A et al (2007) Ionic requirements for membrane-glass adhesion and gigaseal formation in patch-clamp recording. Biophys J 92:3893–3900CrossRefGoogle Scholar
  7. 7.
    Ruknudin A, Song MJ, Sachs E (1991) The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy. J Cell Biol 112:125–134CrossRefGoogle Scholar
  8. 8.
    Sokabe M, Sachs F, Jing Z (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59:722–728CrossRefGoogle Scholar
  9. 9.
    Hamill OP et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Physiol 391:85–100CrossRefGoogle Scholar
  10. 10.
    Opsahl LR, Webb WW (1994) Lipid-glass adhesion in giga-sealed patch-clamped membranes. Biophys J 66(1):75–79CrossRefGoogle Scholar
  11. 11.
    Milton RL, Caldwell JH (1990) How do patch clamp seals form? A lipid bleb model. Eur J Philos 416:758–765Google Scholar
  12. 12.
    Sokabe M, Sachs E (1990) The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy. J Cell Biol 111:599–606CrossRefGoogle Scholar
  13. 13.
    Barkovskaya DAY et al (2004) Gadolinium effects on gigaseal formation and the adhesive properties of a fungal amoeboid cell, the slime mutant of neurospora crassa. Membr Biol 198:77–87Google Scholar
  14. 14.
    Sachs F, Qin F (1993) Gated, ion-selective channels observed with patch pipettes in the absence of membranes: novel properties of a gigaseal. Biophys J 65:1101–1107CrossRefGoogle Scholar
  15. 15.
    Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97:738–747CrossRefGoogle Scholar
  16. 16.
    Kornreich BG (2007) The patch clamp technique: Principles and technical considerations. J Vet Cardiol 9:25–37CrossRefGoogle Scholar
  17. 17.
    Stett A et al (2003) CYTOCENTERING: A novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCHTM chip. Receptors Channels 9:59–66CrossRefGoogle Scholar
  18. 18.
    Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. Wiley, Chichester, 0-471-48685-XGoogle Scholar
  19. 19.
    Fertig N, Blick RH, Behrends JC (2002) Whole cell patch clamp recording performed on a planar glass chip. Biophys J 82:3056–3062CrossRefGoogle Scholar
  20. 20.
    Li S, Lin L (2007) A single cell electrophysiological analysis device with embedded electrode. Sens Actuators A 134:20–26CrossRefGoogle Scholar
  21. 21.
    Ong WL, Yobas L, Ong WY (2006) A missing factor in chip-based patch clamp assay: gigaseal. J Phys 34:187–191Google Scholar
  22. 22.
    Malboubi M et al (2009) The effect of pipette tip roughness on giga-seal formation. World Congr Eng 2:1849–1852Google Scholar
  23. 23.
    Malboubi M et al (2009) Effects of the surface morphology of pipette tip on Giga-seal formation. Eng Lett 17:281–285Google Scholar
  24. 24.
    Malboubi M, Gu Y, Jiang K (2011) Surface properties of glass micropipettes and their effect on biological studies. Nanoscale Res Lett 6:1–10CrossRefGoogle Scholar
  25. 25.
    Goodman M, Lockery SR (2000) Pressure polishing: a method for re-shaping patch pipettes during fire polishing. J Neurosci Methods 100:13–15CrossRefGoogle Scholar
  26. 26.
    Yaul M, Bhatti R, Lawrence S (2008) Evaluating the process of polishing borosilicate glass capillaries used for fabrication of in vitro fertilization (iVF) micro-pipettes. Biomed Microdevices 10:123–128CrossRefGoogle Scholar
  27. 27.
    Matthews B, Judy JW (2006) Design and fabrication of a micromachined planar patch-clamp substrate with integrated microfluidics for single-cell measurements. J Microelectromech Syst 15:214CrossRefzbMATHGoogle Scholar
  28. 28.
    Alberta C (2003) Multi-patch: a chip-based ionchannel assay system for drug screening. In: Picollet-D’hahan N et al (ed.) ICMENS international conference on MEMS, NANO and smart systems, pp 251–254Google Scholar
  29. 29.
    Klemic K, Klemic J, Sigworth F (2005) An air-molding technique for fabricating PDMS planar patch-clamp Electrodes. Eur J Physiol 449:564–572CrossRefGoogle Scholar
  30. 30.
    Kusterer J et al (2005) A diamond-on-silicon patch-clamp-system. Diamond Relat Mater 14:2139–2142CrossRefGoogle Scholar
  31. 31.
    Petrov AG (2001) Flexoelectricity of model and living membranes. Biochimica et Biophysica Acta 1561:1–25CrossRefGoogle Scholar
  32. 32.
    Petrov AG (2006) Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Analytica Chimica Acta 568:70–83CrossRefGoogle Scholar
  33. 33.
    Lau AY et al (2006) Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab Chip 6:1510–1515CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.London Centre for NanotechnologyLondonUK
  2. 2.School of Mechanical EngineeringThe University of BirminghamBirminghamUK

Personalised recommendations