Skip to main content

Synthesis of Ti-MWW Zeolite

  • Chapter
  • First Online:
Book cover MWW-Type Titanosilicate

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Titanosilicate with MWW topology can be prepared by hydrothermal method, dry-gel method, and post-synthesis method. At first, the addition of B atoms in the synthesis gels was identified as the key factor for the successful synthesis of Ti-MWW under hydrothermal condition. Then, several alternative methods, for example, hydrothermal method with dual SDAs and post-synthesis method, were developed to provide B-less or B-free condition, which avoided a waste of B atoms as well as the framework acidity introduced by B atoms. Ti-MWW zeolites prepared by different methods varied in particle size and activity in liquid oxidation reactions, for example, the epoxidation of 1-hexene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellussi G, Rigutto MS (2001) Metal ions associated to molecular sieve frameworks as catalytic sites for selective oxidation reactions. Stud Surf Sci Catal 137:911–955

    Article  CAS  Google Scholar 

  2. Ratnasamy P, Srinivas D, Knözinger H (2004) Acitve sites and reactive intermediates in titanium silicate molecular sieves. Adv Catal 48:1–169

    Article  CAS  Google Scholar 

  3. Wu P, Komatsu T, Yashima T (1996) Characterization of titanium species incorporated into dealuminated mordenites by means of IR spectroscopy and 18O-exchange technique. J Phys Chem 100:10316–10322

    Article  CAS  Google Scholar 

  4. Corma A, Camblor MA, Esteve PA et al (1994) Activity of Ti-Beta catalyst for selective oxidation of alkenes and alkanes. J Catal 145:151–158

    Article  CAS  Google Scholar 

  5. Tuel A (1995) Synthesis, characterization, and catalytic properties of the new TiZSM-12 zeolite. Zeolites 15:236–242

    Article  CAS  Google Scholar 

  6. Wu P, Komatsu T, Yashima T (1997) Ammoximation of Ketones over titammium mordenite. J Catal 168:400–411

    Article  CAS  Google Scholar 

  7. Wu P, Komatsu T, Yashima T (1998) Hydroxylation of aromatics with hydrogen peroxide over titanosilicates with MOR and MFI structures: effect of Ti peroxo species on the diffusion and hydroxylation activity. J Phys Chem B 102:9297–9303

    Article  CAS  Google Scholar 

  8. Xu H, Zhang YT, Wu HH et al (2011) Postsynthesis of mesoporous MOR-type titanosilicate and its unique catalytic properties in liquid-phase oxidations. J Catal 25:263–272

    Article  Google Scholar 

  9. van der Waal JC, Rigutto MS, van Bekkum H (1998) Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes. Appl Catal A: General 167:331–342

    Google Scholar 

  10. Blasco T, Corma A, Navarro MT et al (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156:65–74

    Article  CAS  Google Scholar 

  11. Leonowicz ME, Lawton JA, Lawton SL et al (1994) MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264:1910–1913

    Article  CAS  Google Scholar 

  12. Corma A, Martínez-Soria V, Schnoeveld E (2000) Alkylation of benzene with short-chain olefins over MCM-22 zeolite: catalytic behavior and kinetic mechanism. J Catal 192:163–173

    Article  CAS  Google Scholar 

  13. Corma A, Corell C, Pérez-Pariente J (1995) Synthesis and characterization of MCM-22 zeolite. Zeolites 15:2–8

    Article  CAS  Google Scholar 

  14. Komura K, Murase T, Sugi Y et al (2010) Synthesis of boron-containing CDS-1 zeolite by topotactic dehydration condensation of [B]-PLS-1 prepared from layered silicate H-LDS. Chem Lett 39:948–949

    Article  CAS  Google Scholar 

  15. Wu P, Liu H, Komatsu T et al (1997) Synthesis of ferrisilicate with the MCM-22 structure. Chem Commun 7:663–664

    Article  Google Scholar 

  16. Ahedi RK, Kotasthane AN (1998) Synthesis of FER titanosilicates from a non-aqueous alkali-free seeded system. J Mater Chem 8:1685–1686

    Article  CAS  Google Scholar 

  17. Kubota Y, Koyama Y, Yamada T et al (2008) Synthesis and catalytic performance of Ti-MCM-68 for effective oxidation reactions. Chem Commun 46:6224–6226

    Article  Google Scholar 

  18. Tatsumi T, Jappar N (1998) Properties of Ti-Beta zeolites synthesized by dry-gel conversion and hydrothermal methods. J Phys Chem B 102:7126–7131

    Article  CAS  Google Scholar 

  19. Lv AL, Xu H, Wu HH et al (2011) Hydrothermal synthesis of high-silica mordenite by dual-templating method. Micropor Mesopor Mater 145:80–86

    Google Scholar 

  20. Maschmeyer T, Ray F, Sankar G et al (1995) Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378:159–162

    Article  CAS  Google Scholar 

  21. Morey MS, O’Brien S, Schwarz S et al (2000) Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater 12:898–911

    Article  CAS  Google Scholar 

  22. Jappar N, Xia Q, Tatsumi T (1998) Oxidation activity of Ti-Beta synthesis by a dry-gel conversion method. J Catal 180:132–141

    Article  CAS  Google Scholar 

  23. Corma A, Díaz U, Fornés V et al (1999) Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chem Commun 9:779–780

    Article  Google Scholar 

  24. Levin D, Chang CD, Luo S et al (2000) US 6 114 551

    Google Scholar 

  25. Millini R, Perego G, Parker WO Jr et al (1995) Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Micropor Mater 4:221–230

    Article  CAS  Google Scholar 

  26. Wu P, Tatsumi T, Komatsu T et al (2001) A novel titanosilicate with MWW Structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. J Phys Chem B 105:2897–2905

    Article  CAS  Google Scholar 

  27. Wu P, Miyaji T, Liu YM et al (2005) Synthesis of Ti-MWW by a dry-gel conversion method. Catal Today 99:233–240

    Article  CAS  Google Scholar 

  28. Wu P, Tatsumi T (2002) Preparation of B-free Ti-MWW through reversible structural conversion. Chem Commun 10:1026–1027

    Article  Google Scholar 

  29. Jorda E, Tuel A, Teissier R et al (1997) TiF4: An original and very interesting precursor to the synthesis of titanium containing silicalite-1. Zeolites 19:238–245

    Article  CAS  Google Scholar 

  30. Balducci L, Bianchi D, Bortolo R et al (2003) Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite. Angew Chem Int Ed 42:4937–4940

    Article  CAS  Google Scholar 

  31. Wang X, Guo X (1999) Synthesis, characterization and catalytic properties of low cost titanium silicalite. Catal Today 51:177–186

    Article  CAS  Google Scholar 

  32. Wu P, Tatsumi T, Komatsu T et al (2001) A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. J Catal 202:245–255

    Article  CAS  Google Scholar 

  33. Zones SI, Santilli D (1992) In: Von Ballmoos R, Higgins JB, Treacy MMJ (eds) Proceedings of the 9th international zeolite conference, Montreal. Butterworth-Heinemann, Stoneham, p 171

    Google Scholar 

  34. Wagner P, Nakagawa Y, Lee GS et al (2000) Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39. J Am Chem Soc 122:263–273

    Article  CAS  Google Scholar 

  35. Puppe L (1984) U.S. Pat., 4439409

    Google Scholar 

  36. Zones SI, Hwang S-J, Davis ME (2001) Studies of the synthesis of SSZ-25 zeolite in a “Mixed-Template” system. Chem Eur J 7:1990–2001

    Article  CAS  Google Scholar 

  37. Zones SI (1989) U.S. Pat., 4826667

    Google Scholar 

  38. Lee S-H, Shin C-H, Hong SB (2003) Synthesis of zeolite MCM-22 using N,N,N,N′,N′,N′,-Hexamethyl-1,5-pentanediaminium and alkali metal cations as structure-directing agents. Chem Lett 32:542–543

    Article  CAS  Google Scholar 

  39. Hong SB, Min H-K, Shin C-H et al (2007) Synthesis, crystal Structure, characterization, and catalytic properties of TNU-9. J Am Chem Soc 35:10870–10885

    Article  Google Scholar 

  40. Liu N, Liu YM, Yue CC et al (2007) A new synthesis route for MWW analogues using octyltrimethylammonium cations as structure-directing agents under alkali-free conditions. Chem Lett 36:916–917

    Article  CAS  Google Scholar 

  41. Yue CC, Xie W, Liu YM et al (2011) Hydrothermal synthesis of MWW-type analogues using linear-type quaternary alkylammonium hydroxides as structure-directing agents. Micropor Mesopor Mater 142:347–353

    Article  CAS  Google Scholar 

  42. Fung AS, Lawton SL, Roth WJ (1994) U.S. Pat., 5362697

    Google Scholar 

  43. Corma A, Diaz U, Fornés V et al (2000) Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2. J Catal 191:218–224

    Article  CAS  Google Scholar 

  44. Bandyopadhyay R, Kubota Y, Sugimoto N et al (1999) Synthesis of borosilicate zeolites by the dry gel conversion method and their characterization. Micropor Mesopor Mater 32:81–91

    Article  CAS  Google Scholar 

  45. Hari Prasad Rao PR, Matsukata M (1996) Dry-gel conversion technique for synthesis of zeolite BEA. Chem Commun 12:1441–1442

    Google Scholar 

  46. Matsukata M, Nishiyama N, Ueyama K et al (1996) Crystallization of FER and MFI zeolites by a vapor-phase transport method. Micropor Mater 7:109–117

    Article  CAS  Google Scholar 

  47. Wang J, Cheng X, Guo J et al (2006) High-silica MOR type zeolite self-transformed from dry aluminosilicate gel in OSAs-free and fluoride-free reactant system. Micropor Mesopor Mater 96:307–313

    Article  CAS  Google Scholar 

  48. Matsukata M, Ogura M, Osaki T et al (1999) Conversion of dry gel to microporous crystals in gas phase. Topics Catal 9:77–92

    Article  CAS  Google Scholar 

  49. Hari Prasad Rao PR, Leon y Leon CA, Ueyama K et al (1998) Synthesis of BEA by dry gel conversion and its characterization. Micropor Mesopor Mater 21:305–313

    Google Scholar 

  50. Blasco T, Camblor MA, Corma A et al (1996) Unseeded synthesis of Al-free Ti-β zeolite in fluoride medium: a hydrophobic selective oxidation catalyst. Chem Commun 20:2367–2368

    Article  Google Scholar 

  51. Blasco T, Corma A, Díaz-Cabanas MJ et al (2004) Synthesis, characterization, and framework heteroatom localization in ITQ-21. J Am Chem Soc 126:13414–13423

    Article  CAS  Google Scholar 

  52. Jiang J, Jorda JL, Yu J et al (2011) Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333:1131–1133

    Article  CAS  Google Scholar 

  53. Hernández-Rodríguez M, Jordá JL, Rey F et al (2012) Synthesis and structure determination of a new microporous zeolite with large cavities connected by small pores. J Am Chem Soc 134:13232–13235

    Article  Google Scholar 

  54. Schreyeck L, Caullet P, Mougenel J-C et al (1995) A layered microporous aluminosilicate precursor of FER-type zeolite. J Chem Soc Chem Commun 21:2187–2188

    Article  Google Scholar 

  55. Fan WB, Wu P, Namba S et al (2004) A titanosilicate that is structurally analogous to an MWW-type lamellar precursor. Angew Chem 117:6877–6881

    Google Scholar 

  56. Camblor MA, Corell C, Corma A et al (1996) A new microporous polymorph of silica isomorphous to zeolite MCM-22. Chem Mater 8:2415–2417

    Article  CAS  Google Scholar 

  57. Liu N, Liu YM, Xie W et al (2007) Hydrothermal synthesis of boron-free Ti-MWW with dual structure-directing agents. Stud Surf Sci Catal 170:464–469

    Article  Google Scholar 

  58. Roth WJ, Shvets OV, Shamzhy M et al (2011) Postsynthesis transformation of three-dimensional framework into a lamellar zeolite with modifiable architecture. J Am Chem Soc 133:6130–6133

    Article  CAS  Google Scholar 

  59. Verheyen E, Joos L, Van Havenbergh K et al (2012) Design of zeolite by inverse sigma transformation. Nat Mater 11:1059–1064

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Wu, P., Xu, H., Xu, L., Liu, Y., He, M. (2013). Synthesis of Ti-MWW Zeolite. In: MWW-Type Titanosilicate. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39115-6_2

Download citation

Publish with us

Policies and ethics