Skip to main content

Molecular Beacons for Detection of Single-Nucleotide Polymorphisms

  • Chapter
  • First Online:
Molecular Beacons

Abstract

Molecular beacons have been employed for the detection of single-nucleotide polymorphisms (SNPs) and allele discrimination because of their excellent selectivity in distinguishing single-nucleotide mutation. Moreover, since SNPs represent the most abundant class of the human genome alterations, they have also been used as biomarkers to identify complex disease-related genes and to perform pharmacogenomic analysis of drug response. In this chapter, current molecular beacon-based SNP genotyping methods, chemistries, and platforms are discussed. More specifically, the strategies of developing SNP detection approach based on molecular beacon-incorporated platforms, such as real-time polymerase chain reaction, endonucleases- or ribonuclease-dependent amplification methods, quantum dots or various quencher-based reporting systems, and nucleic acids’ secondary-structure-opening beacon probes, are emphasized. Finally, current efforts in using molecular beacons for real human genome SNP analysis are summarized, providing a guideline for smarter use of molecular beacons for SNP genotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCBI dbSNP. http://www.ncbi.nlm.nih.gov/snp/index.html. Accessed 21 July 2011

  2. Ding C (2007) ‘Other’ applications of single nucleotide polymorphisms. Trends Biotechnol 25:279–283

    Article  CAS  Google Scholar 

  3. Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22:139–144

    Article  CAS  Google Scholar 

  4. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  CAS  Google Scholar 

  5. Miller RD, Phillips MS, Jo I, Donaldson MA, Studebaker JF, Addleman N, Alfisi SV, Ankener WM, Bhatti HA, Callahan CE, Carey BJ, Conley CL, Cyr JM, Derohannessian V, Donaldson RA, Elosua C, Ford SE, Forman AM, Gelfand CA, Grecco NM, Gutendorf SM, Hock CR, Hozza MJ, Hur S, In SM, Jackson DL, Jo SA, Jung SC, Kim S, Kimm K, Kloss EF, Koboldt DC, Kuebler JM, Kuo FS, Lathrop JA, Lee JK, Leis KL, Livingston SA, Lovins EG, Lundy ML, Maggan S, Minton M, Mockler MA, Morris DW, Nachtman EP, Oh B, Park C, Park CW, Pavelka N, Perkins AB, Restine SL, Sachidanandam R, Reinhart AJ, Scott KE, Shah GJ, Tate JM, Varde SA, Walters A, White JR, Yoo YK, Lee JE, Boyce-Jacino MT, Kwok PY, and Project SCAF (2005) High-density single-nucleotide polymorphism maps of the human genome. Genomics 86:117–126

    Article  CAS  Google Scholar 

  6. Sobrino B, Brión M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  CAS  Google Scholar 

  7. Toubanaki DK, Christopoulos TK, Ioannou PC, Flordellis CS (2009) Identification of single-nucleotide polymorphisms by the oligonucleotide ligation reaction: a DNA biosensor for simultaneous visual detection of both alleles. Anal Chem 81:218–224

    Article  CAS  Google Scholar 

  8. Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, Kwiatkowski RW, Sander TJ, de Arruda M, Arco DA, Neri BP, Brow MA (1999) Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 17:292–296

    Article  CAS  Google Scholar 

  9. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6:3543–3557

    Article  CAS  Google Scholar 

  10. Barreiro LB, Henriques R, Mhlanga MM (2009) High-throughput SNP genotyping: combining tag SNPs and molecular beacons. Methods Mol Biol 578:255–276

    Article  CAS  Google Scholar 

  11. Mhlanga MM, Malmberg L (2001) Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods 25:463–471

    Article  CAS  Google Scholar 

  12. Wang H, Li J, Wang Y, Jin J, Yang R, Wang K, Tan W (2010) Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. Anal Chem 82:7684–7690

    Article  CAS  Google Scholar 

  13. Gaunt TR, Hinks LJ, Rassoulian H, Day IN (2003) Manual 768 or 384 well microplate gel ‘dry’ electrophoresis for PCR checking and SNP genotyping. Nucleic Acids Res 31:e48

    Article  Google Scholar 

  14. Mengel-Jorgensen J, Sanchez JJ, Borsting C, Kirpekar F, Morling N (2004) Multiplex Y chromosome SNP genotyping using MALDI-TOF mass spectrometry. Prog Forensic Genet 10(1261):15–17

    Google Scholar 

  15. Hecker KH, Taylor PD, Gjerde DT (1999) Mutation detection by denaturing DNA chromatography using fluorescently labeled polymerase chain reaction products. Anal Biochem 272:156–164

    Article  CAS  Google Scholar 

  16. Huang Y, Zhang YL, Xu X, Jiang JH, Shen GL, Yu RQ (2009) Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection. J Am Chem Soc 131:2478–2480

    Article  CAS  Google Scholar 

  17. Patolsky F, Lichtenstein A, Willner I (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol 19:253–257

    Article  CAS  Google Scholar 

  18. Kwok PY, Chen X (2003) Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5:43–60

    CAS  Google Scholar 

  19. Tsourkas A, Behlke MA, Rose SD, Bao G (2003) Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res 31:1319–1330

    Article  CAS  Google Scholar 

  20. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  21. Giesendorf BA, Vet JA, Tyagi S, Mensink EJ, Trijbels FJ, Blom HJ (1998) Molecular beacons: a new approach for semiautomated mutation analysis. Clin Chem 44:482–486

    CAS  Google Scholar 

  22. Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14:143–149

    Article  CAS  Google Scholar 

  23. Durand R, Eslahpazire J, Jafari S, Delabre JF, Marmorat-Khuong A, di Piazza JP, Le Bras J (2000) Use of molecular beacons to detect an antifolate resistance-associated mutation in Plasmodium falciparum. Antimicrob Agents Chemother 44:3461–3464

    Article  CAS  Google Scholar 

  24. Kong RM, Zhang XB, Zhang LL, Huang Y, Lu DQ, Tan W, Shen GL, Yu RQ (2011) Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification. Anal Chem 83:14–17

    Article  CAS  Google Scholar 

  25. Liu XP, Hou JL, Liu JH (2010) A novel single nucleotide polymorphism detection of a double-stranded DNA target by a ribonucleotide-carrying molecular beacon and thermostable RNase HII. Anal Biochem 398:83–92

    Article  CAS  Google Scholar 

  26. Goldrick MM (2001) RNase cleavage-based methods for mutation/SNP detection, past and present. Hum Mutat 18:190–204

    Article  CAS  Google Scholar 

  27. Li X, Huang Y, Guan Y, Zhao M, Li Y (2006) Universal molecular beacon-based tracer system for real-time polymerase chain reaction. Anal Chem 78:7886–7890

    Article  CAS  Google Scholar 

  28. Kiesling T, Cox K, Davidson EA, Dretchen K, Grater G, Hibbard S, Lasken RS, Leshin J, Skowronski E, Danielsen M (2007) Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Res 35:e117

    Article  Google Scholar 

  29. Li JJ, Chu Y, Lee BY, Xie XS (2008) Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Res 36:e36

    Article  Google Scholar 

  30. Komiyama M, Ye S, Liang X, Yamamoto Y, Tomita T, Zhou JM, Aburatani H (2003) PNA for one-base differentiating protection of DNA from nuclease and its use for SNPs detection. J Am Chem Soc 125:3758–3762

    Article  CAS  Google Scholar 

  31. Ye S, Miyajima Y, Ohnishi T, Yamamoto Y, Komiyama M (2007) Combination of peptide nucleic acid beacon and nuclease S1 for clear-cut genotyping of single nucleotide polymorphisms. Anal Biochem 363:300–302

    Article  CAS  Google Scholar 

  32. Mao X, Jiang J, Xu X, Chu X, Luo Y, Shen G, Yu R (2008) Enzymatic amplification detection of DNA based on “molecular beacon” biosensors. Biosens Bioelectron 23:1555–1561

    Article  CAS  Google Scholar 

  33. Kim JH, Morikis D, Ozkan M (2004) Adaptation of inorganic quantum dots for stable molecular beacons. Sens Actuators B 102:315–319

    Article  CAS  Google Scholar 

  34. Li YQ, Guan LY, Wang JH, Zhang HL, Chen J, Lin S, Chen W, Zhao YD (2011) Simultaneous detection of dual single-base mutations by capillary electrophoresis using quantum dot-molecular beacon probe. Biosens Bioelectron 26:2317–2322

    Article  CAS  Google Scholar 

  35. Saito Y, Mizuno E, Bag SS, Suzuka I, Saito I (2007) Design of a novel G-quenched molecular beacon: a simple and efficient strategy for DNA sequence analysis. Chem Commun (Camb):4492–4494

    Google Scholar 

  36. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370

    Article  CAS  Google Scholar 

  37. Mao X, Xu H, Zeng Q, Zeng L, Liu G (2009) Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem Commun (Camb):3065–3067

    Google Scholar 

  38. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Article  Google Scholar 

  39. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  40. Kim JH, Chaudhary S, Ozkan M (2007) Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection. Nanotechnology 18:195105

    Article  Google Scholar 

  41. Medintz IL, Berti L, Pons T, Grimes AF, English DS, Alessandrini A, Facci P, Mattoussi H (2007) A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett 7:1741–1748

    Article  CAS  Google Scholar 

  42. Nesterova IV, Erdem SS, Pakhomov S, Hammer RP, Soper SA (2009) Phthalocyanine dimerization-based molecular beacons using near-IR fluorescence. J Am Chem Soc 131:2432–2433

    Article  CAS  Google Scholar 

  43. Lin YW, Ho HT, Huang CC, Chang HT (2008) Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon. Nucleic Acids Res 36:e123

    Article  Google Scholar 

  44. Farjami E, Clima L, Gothelf K, Ferapontova EE (2011) “Off-on” electrochemical hairpin-DNA-based genosensor for cancer diagnostics. Anal Chem 83:1594–1602

    Article  CAS  Google Scholar 

  45. Grimes J, Gerasimova YV, Kolpashchikov DM (2010) Real-time SNP analysis in secondary-structure-folded nucleic acids. Angew Chem Int Ed Engl 49:8950–8953

    Article  CAS  Google Scholar 

  46. Kuhn H, Demidov VV, Coull JM, Fiandaca MJ, Gildea BD, Frank-Kamenetskii MD (2002) Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets. J Am Chem Soc 124:1097–1103

    Article  CAS  Google Scholar 

  47. Smolina IV, Demidov VV, Soldatenkov VA, Chasovskikh SG, Frank-Kamenetskii MD (2005) End invasion of peptide nucleic acids (PNAs) with mixed-base composition into linear DNA duplexes. Nucleic Acids Res 33:e146

    Article  Google Scholar 

  48. Shi M, Caprau D, Dagle J, Christiansen L, Christensen K, Murray JC (2004) Application of kinetic polymerase chain reaction and molecular beacon assays to pooled analyses and high-throughput genotyping for candidate genes. Birth Defects Res A Clin Mol Teratol 70:65–74

    Article  CAS  Google Scholar 

  49. Boniotto M, Hazbón MH, Jordan WJ, Lennon GP, Eskdale J, Alland D, Gallagher G (2004) Novel hairpin-shaped primer assay to study the association of the -44 single-nucleotide polymorphism of the DEFB1 gene with early-onset periodontal disease. Clin Diagn Lab Immunol 11:766–769

    CAS  Google Scholar 

  50. Alsmadi OA, Al-Kayal F, Al-Hamed M, Meyer BF (2006) Frequency of common HFE variants in the Saudi population: a high throughput molecular beacon-based study. BMC Med Genet 7:43

    Article  Google Scholar 

  51. Bengra C, Mifflin TE, Khripin Y, Manunta P, Williams SM, Jose PA, Felder RA (2002) Genotyping of essential hypertension single-nucleotide polymorphisms by a homogeneous PCR method with universal energy transfer primers. Clin Chem 48:2131–2140

    CAS  Google Scholar 

  52. Täpp I, Malmberg L, Rennel E, Wik M, Syvänen AC (2000) Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan assay and Molecular Beacon probes. Biotechniques 28:732–738

    Google Scholar 

  53. Myakishev MV, Khripin Y, Hu S, Hamer DH (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 11:163–169

    Article  CAS  Google Scholar 

  54. Wang J, Wang W, Liu Y, Duo L, Huang L, Jiang X (2009) The method of single-nucleotide variations detection using capillary electrophoresis and molecular beacons. Mol Biol Rep 36:1903–1908

    Article  CAS  Google Scholar 

  55. Petersen K, Vogel U, Rockenbauer E, Nielsen KV, Kølvraa S, Bolund L, Nexø B (2004) Short PNA molecular beacons for real-time PCR allelic discrimination of single nucleotide polymorphisms. Mol Cell Probes 18:117–122

    Article  CAS  Google Scholar 

  56. Tang H, Yang X, Wang K, Tan W, Li H, He L, Liu B (2008) RNA-templated single-base mutation detection based on T4 DNA ligase and reverse molecular beacon. Talanta 75:1388–1393

    Article  CAS  Google Scholar 

  57. Gerasimova YV, Hayson A, Ballantyne J, Kolpashchikov DM (2010) A single molecular beacon probe is sufficient for the analysis of multiple nucleic acid sequences. Chembiochem 11:1762–1768

    Article  CAS  Google Scholar 

  58. Ohkubo A, Taguchi H, Seio K, Nagasawa H, Tsukahara T, Sekine M (2007) A new hydrophobic linker effective for the in situ synthesis of DNA-CPG conjugates as tools for SNP analysis. Tetrahedron Lett 48:5147–5150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxu You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

You, M., Yang, C.J., Tan, W. (2013). Molecular Beacons for Detection of Single-Nucleotide Polymorphisms. In: Yang, C., Tan, W. (eds) Molecular Beacons. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39109-5_4

Download citation

Publish with us

Policies and ethics