Skip to main content

Climate Change Impacts on the Water Sector

  • Chapter
  • First Online:
Climate Adaptation Santiago

Abstract

The regional impacts of global climate and socio-economic change will heavily influence the future balance of water availability (supply side) and water demand in the Metropolitan Region of Santiago de Chile (MRS). Reduced run-off in the Maipo-Mapocho river catchment coupled with natural precipitation variability will pose a major challenge for water resource management in the coming years. This chapter elaborates on an impact assessment for the year 2050, which combines two climate scenarios for the supply side with two explorative socio-economic scenarios for the demand side. While adaptive measures for water supplies also involve increasing water storage or recycling grey water in the urban area, adaptive options for water demand focus on upgrading water efficiency in both agriculture and private domestic households. In addition to technical aspects, institutional/policy-based matters and capacity development measures are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Related to the precipitation rates at Quinta Normal station. Years with precipitation values between 200 and 400 mm are regarded as ‘normal years’, those above 400 mm as ‘wet years’, and below 200 mm as ‘dry years’.

  2. 2.

    Synonym for downscaled climate scenario A2 for the time span 2045–2065.

  3. 3.

    Synonym for downscaled climate scenario B1/B2 for the time span 2045–2065.

  4. 4.

    Reservoirs like ‘El Yeso’ are crucial to the drinking water supply in the MRS, particularly in terms of dry months.

  5. 5.

    ‘Irrigation efficiency’ is defined as the relationship between the amount of water plants require for optimum growth and the amount of water brought to the field by irrigation (INE 2007).

  6. 6.

    The INE (2007) defines efficiencies as follows: 75 % for sprinkler irrigation, 85 % for drip irrigation and 90 % for micro-irrigation.

  7. 7.

    Three hundred households in 15 different communities were consulted between 4 and 27 June 2009. The survey was conducted with people over 18 years of age from different socio-economic backgrounds.

  8. 8.

    Generally, grey water includes all household waste water with the exception of toilet and kitchen effluents.

References

  • Barton, J., Kopfmüller, J., & Stelzer, V. (2011a). Project ‘ClimateAdaptationSantiago’ (CAS): Quantitative variables: Tendencies and scenario estimations 2010–2050. Working Paper.

    Google Scholar 

  • Barton, J., Kopfmüller, J., & Stelzer, V. (2011b). Project ‘ClimateAdaptationSantiago’ (CAS): Scenario storylines for the RMS. Working Paper.

    Google Scholar 

  • Bartosch, A. (2007). Die Wasserversorgung in einer Metropolregion in Lateinamerika. Das Beispiel Santiago de Chile. Thesis. Universidad Friedrich-Schiller-Universität Jena.

    Google Scholar 

  • Bayerische Landesanstalt für Weinbau und Gartenbau. (2007, August). Rasen und Wiese im Hausgarten. Veitshöchheim, leaflet.

    Google Scholar 

  • Biblioteca del Congreso Nacional de Chile Sistema integrado de Información territorial (SIIT). (2013). Division regional: Polígonos de las regiones de Chile . http://siit2.bcn.cl/mapas_vectoriales/index_html/. Accessed 22 Feb 2013.

  • Bühringer, H. (2006). Trinkwasserversorgung in Baden-Württemberg. Statistisches Monatsheft Baden-Württemberg, 5, 28–31.

    Google Scholar 

  • Comisión Nacional de Riego (CNR). (2007). Diagnóstico de Caudales, Disponibles en Cuencas No Controladas de Recuperación. Cuencas Aconcagua y Maipo. Santiago de Chile.

    Google Scholar 

  • Comisión Nacional de Riego (CNR). (2009). Ley Nº 18.450 de Fomento a la Inversión Privada en Obras de Riego y Drenaje. Santiago de Chile.

    Google Scholar 

  • Cortés, G., Schaller, S., Rojas, M., Garcia, L., Descalzi, A., Vargas, L., McPhee, J. (2012). Assessment of the current climate and expected climate changes in the Metropolitan Region of Santiago de Chile. UFZ-Report 03/2012, Helmholtz Center for Environmental Research UFZ, Leipzig.

    Google Scholar 

  • Dirección General de Aguas (DGA). (2007a). Estimaciones de Demanda de Agua y Proyecciones Futuras. Zona II. Regiones V a XII y Región Metropolitana. DGA Publicación S.I.T. Nº123. Santiago de Chile.

    Google Scholar 

  • Direccíon General de Aguas (DGA). (2007b). Evaluación de la explotación maxima sustentable del acuífero Santiago sur. Santiago de Chile.

    Google Scholar 

  • Dirección Meteorológica de Chile (DMC). (2012). Anuarios climatológicos 1960-2011. Santiago de Chile.

    Google Scholar 

  • Döll, P. (2008). Wasser weltweit – Wie groß sind die globalen Süßwasserressourcen, und wie nutzt sie der Mensch? Forschung Frankfurt, 3, 54–59.

    Google Scholar 

  • Falkenmark, M. (1989). The massive water scarcity threatening Africa – Why isn’t It being addressed? Ambio, 18(2), 112–118.

    Google Scholar 

  • Hulme, M., Jenkins, G. J., Lu, X., Turnpenny, J. R., Mitchell T. D., Jones, R. G., et al. (2002). Climate change scenarios for the United Kingdom: The UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK.

    Google Scholar 

  • Instituto Nacional de Estadísticas. (2005). Región Metropolitana. Perfil de la dinámica económica regional. Santiago de Chile.

    Google Scholar 

  • Instituto Nacional de Estadísticas (INE). (2007). VI Censo Agropecuario Nacional, 2007. Santiago de Chile.

    Google Scholar 

  • Instituto Nacional de Estadísticas. (2008). División político-administrativa y censal, 2007. Santiago de Chile.

    Google Scholar 

  • Intergovernmental panel on climate change. (2008). Technical paper on climate change and water. http://www.ipcc.ch/pdf/technical-papers/climate-change-wateren.pdf. Accessed 30 July 2012.

  • Kopfmüller, J., Lehn, H., Nuissl, H., Krellenberg, K., & Heinrichs, D. (2009). Sustainable development of megacities: An integrative research approach for the case of Santiago Metropolitan Region. Die Erde, 140(4), 417–448.

    Google Scholar 

  • Kulkarni, S. (2011). Innovative technologies for water saving in irrigated agriculture. International Journal of Water Resources and Arid Environments, 1(3), 226–231.

    Google Scholar 

  • Kurukulasuriya, P., & Rosenthal, S. (2003). Climate change and agriculture: A review of impacts and adaptations world bank climate change series paper no. 91. Paper prepared and published for the Rural Development Group and Environment Department of the World Bank.

    Google Scholar 

  • Lehn, H., Steiner, M., & Mohr, H. (1996). Wasser – die elementare Ressource. Heidelberg: Leitlinien einer nachhaltigen Nutzung.

    Book  Google Scholar 

  • Lehn, H., McPhee, J., Vogdt, J., Schleenstein, G., Simon, L.-M., Strauch, G., et al. (2012). Risks and opportunities for sustainable management of water resources and services in Santiago de Chile. In D. Heinrichs, K. Krellenberg, B. Hansjürgens, & F. Martínez (Eds.), Risk Habitat Megacity (pp. 251–278). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Marcuello, C., & Lallana, C. (2010). Indicator fact sheet (WQ01c) water exploitation index. http://www.eea.europa.eu/data-and-maps/indicators/water-exploitation-index. Accessed 31 July 2012.

  • Meza, F. J. (2005). Variability of reference evapotranspiration and water demands. Association to ENSO in the Maipo river basin, Chile. Global and Planetary Change, 47, 212–220.

    Article  Google Scholar 

  • Moya, L. (2009). Contribución de los Jardines Domésticos Urbanos a la Cobertura Vegetacional de Santiago de Chile. Tesis presentada al instituto de Estudios urbanos y territoriales de la Pontificia Universidad de Catolica de Chile, Santiago de Chile.

    Google Scholar 

  • Obervatorio de ciudades (OCUC). (2010). Formulación sello de efficiencia hídrica en el paisaje. Santiago de Chile.

    Google Scholar 

  • Pontificia Universidad Católica de Chile, Centro de Cambio GLOBAL (PUC). (2011). Analysis of agricultural water demands in the Maipo Basin. Technical report. Santiago de Chile.

    Google Scholar 

  • Ropelowski, C. S., & Halpert, M. S. (1996). Quantifying Southern oscillation-precipitation relationships. Journal of Climate, 9(5), 1043–1059.

    Article  Google Scholar 

  • Superintendencia de los servicios Sanitarios (SISS). (2010). Informe de gestión 2009. Santiago de Chile.

    Google Scholar 

  • Superintendencia de los servicios Sanitarios (SISS). (2011). Informe de gestión 2010. Santiago de Chile.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Lehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lehn, H., Simon, L.M., Oertel, M. (2014). Climate Change Impacts on the Water Sector. In: Krellenberg, K., Hansjürgens, B. (eds) Climate Adaptation Santiago. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39103-3_4

Download citation

Publish with us

Policies and ethics