Skip to main content

Segmentation for Multiple Sclerosis Lesions Based on 3D Volume Enhancement and 3D Alpha Matting

  • Conference paper
Image Analysis and Recognition (ICIAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Included in the following conference series:

Abstract

Segmenting of Multiple Sclerosis (MS) lesions in magnetic resonance (MR) images is a hot issue in biomedical engineering. This paper presents a novel approach for segmentation of MS lesions in T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (Flair) MR images. The proposed approach is based on three-dimensional (3D) enhancement followed by false positive reduction methods and a three dimensional (3D) alpha matting technique. Firstly, the MS lesions in 3D volumes are enhanced driven by segmenting and enhancing single slices with MS lesions. Then a binary volume of interests (VOIs) of potential MS lesions is generated by thresholding. Secondly, multimodality information is used to segment the brain white matter. Then the location and the size of MS lesions are used to remove false positive VOIs. Finally, a 3D alpha matting method is utilized to refine the segmentation results, and to compute the VOIs with sub-pixel precision by considering partial volume effects. The experiments on real MRI data shows the unsupervised segmentation method can obtain better result than some state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls, L., Ramió, T.L., Rovira, A.: Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches. Information Sciences 186, 164–185 (2012)

    Article  Google Scholar 

  2. Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging 20(8), 677–688 (2001)

    Article  Google Scholar 

  3. Dugas-Phocion, G., Gonzalez, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N.: Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI. Biomedical Imaging: Nano to Macro (2004)

    Google Scholar 

  4. Aït-Ali, L.S., Prima, S., Hellier, P., Carsin, B., Edan, G., Barillot, C.: STREM: A robust multidimensional parametric method to segment MS lesions in MRI. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 409–416. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Zeng, Z., Zwiggelaar, R.: Joint Histogram Modelling for Segmentation Multiple Sclerosis Lesions. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2011. LNCS, vol. 6930, pp. 133–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Souplet, J.C., Lebrun, C., Ayache, N., Malandain, G.: An automatic segmentation of T2-FLAIR multiple sclerosis lessions. In: The MIDAS Journal - MS lesion Segmentation (MICCAI 2008 Workshop), pp. 1–5 (2008)

    Google Scholar 

  7. Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 111–118. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  9. Stephen, M.S.: Fast robust automated brain extraction. Human Brain Mapping 17(3), 143–155 (2002)

    Article  MathSciNet  Google Scholar 

  10. Kraskov, A., Stogbauer, H., Grassberger, P.: HMRF-EM-image: Estimating mutual information. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 69(6), 1–16 (2004)

    Article  MathSciNet  Google Scholar 

  11. Wang, W.H., Feng, Q.J., Chen, W.F.: Segmentation of brain MR images based on the measurement of difference of mutual information and Gauss-Markov random field model. Journal of Computer Research and Development 46(3), 521–527 (2009)

    Google Scholar 

  12. Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3-D brain images. IEEE Transactions on Medical Imaging 21(2), 122–138 (2002)

    Article  Google Scholar 

  13. Grosman, R.I., Mcgowan, J.C.: Perspectives on Multiple Sclerosis. AJNR 19, 176–186 (1998)

    Google Scholar 

  14. Shao, H.C., Cheng, W.Y., Chen, Y.C.: Colored muti-neuron image processing for segmenting and tracing neural circuits. In: Proceedings of IEEE International Conference on Image Processing, pp. 1–4 (2012)

    Google Scholar 

  15. Levin, A., Lischinski, D., Weiss, Y.: A Closed Form Solution to Natural Image Matting. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 228–242 (2008)

    Article  Google Scholar 

  16. Styner, M., Lee, J., Chin, B., Chin, M.S., Commowick, O., Tran, H.H., Jewells, V., Warfield, S.: 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation. MIDAS Journal, 1–5 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, Z., Zwiggelaar, R. (2013). Segmentation for Multiple Sclerosis Lesions Based on 3D Volume Enhancement and 3D Alpha Matting. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics