Advertisement

Automatic Estimation of the Arteriolar-to-Venular Ratio in Retinal Images Using a Graph-Based Approach for Artery/Vein Classification

  • Behdad Dashtbozorg
  • Ana Maria Mendonça
  • Aurélio Campilho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7950)

Abstract

The Arteriolar-to-Venular Ratio (AVR) is a well known index for the diagnosis of diseases such as diabetes, hypertension or cardiovascular pathologies. This paper presents a fully automatic AVR estimation method which uses a graph-based artery/vein classification approach to classify the retinal vessels by a combination of structural information taken from the vasculature graph with intensity features from the original color image. This method was evaluated on the images of the INSPIRE-AVR dataset. The mean error and the correlation coefficient of obtained results with respect to the reference AVR values were identical to the ones obtained by the second observer using a semi-automated system, which demonstrate the potential of the herein proposed solution for clinical application.

Keywords

Artery/Vein classification Arteriolar-to-Venular Ratio Optic disc detection Retinal images Vessel segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nguyen, T.T., Wong, T.Y.: Retinal vascular changes and diabetic retinopathy. Current Diabetes Reports 9, 277–283 (2009)CrossRefGoogle Scholar
  2. 2.
    Neubauer, A.S., Ludtke, M., Haritoglou, C., Priglinger, S., Kampik, A.: Retinal vessel analysis reproducibility in assessing cardiovascular disease. Optometry and Vision Science 85, 247–254 (2008)CrossRefGoogle Scholar
  3. 3.
    Hubbard, L.D., Brothers, R.J., King, W.N., Clegg, L.X., Klein, R., Cooper, L.S., Sharrett, A., Davis, M.D., Cai, J.: Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106, 2269–2280 (1999)CrossRefGoogle Scholar
  4. 4.
    Knudtson, M.D., Lee, K.E., Hubbard, L.D., Wong, T.Y., Klein, R., Klein, B.E.K.: Revised formulas for summarizing retinal vessel diameters. Current Eye Research 27, 143–149 (2003)CrossRefGoogle Scholar
  5. 5.
    Ruggeri, A., Grisan, E., De Luca, M.: An automatic system for the estimation of generalized arteriolar narrowing in retinal images. IEEE Engineering in Medicine and Biology Society, 6464–6467 (2007)Google Scholar
  6. 6.
    Tramontan, L., Grisan, E., Ruggeri, A., Member, S.: An improved system for the automatic estimation of the arteriolar- to-venular diameter ratio (avr) in retinal images. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 3550–3553 (2008)Google Scholar
  7. 7.
    Niemeijer, M., Xu, X., Dumitrescu, A., Gupta, P., van Ginneken, B., Folk, J., Abrćmoff, M.: Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans. Medical Imaging 30, 1941–1950 (2011)CrossRefGoogle Scholar
  8. 8.
    Muramatsu, C., Hatanaka, Y., Iwase, T., Hara, T., Fujita, H.: Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images. The Official Journal of the Computerized Medical Imaging Society 35, 472–480 (2011)CrossRefGoogle Scholar
  9. 9.
    Mendonça, A.M., Cardoso, F., Sousa, A.V., Campilho, A.: Automatic localization of the optic disc in retinal images based on the entropy of vascular directions. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II. LNCS, vol. 7325, pp. 424–431. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Mendonça, A., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging 25, 1200–1213 (2006)CrossRefGoogle Scholar
  11. 11.
    Mendonça, A., Dashtbozorg, B., Campilho, A.: Segmentation of the vascular network of the retina. In: Ng, E.Y.K., Acharya, U.R., Suri, J.S., Campilho, A. (eds.) Image Analysis and Modeling in Opthalmology. CRC Press (in press, 2013)Google Scholar
  12. 12.
    Dashtbozorg, B., Mendonça, A., Campilho, A.: Automatic classification of retinal vessels using structural and intensity information. In: Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA (in press, 2013)Google Scholar
  13. 13.
    Niemeijer, M., Xu, X., Dumitrescu, A., Gupta, P., van Ginneken, B., Folk, J., Abramoff, M.: INSPIRE-AVR: Iowa Normative Set for Processing Images of the Retina-Artery Vein Ratio, http://webeye.ophth.uiowa.edu/component/k2/item/270

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Behdad Dashtbozorg
    • 1
    • 2
  • Ana Maria Mendonça
    • 1
    • 2
  • Aurélio Campilho
    • 1
    • 2
  1. 1.INEB-Instituto de Engenharia BiomédicaPortoPortugal
  2. 2.Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations