Skip to main content

Cosine-Driven Non-linear Denoising

  • Conference paper
Image Analysis and Recognition (ICIAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Included in the following conference series:

Abstract

The Perona-Malik model is an effective but ill-posed model for denoising digital images by anisotropic diffusion. Instead of complex regularizations, we propose a new continuous model which is well-posed and show that it is nevertheless effective for denoising. In addition, an extension of our model offers the possibility of inducing a convergence for the discretization. A comparison to the original Perona-Malik model is carried out using an human vision-centered quality index which shows the improvements of our model when it comes to denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  2. Kuijper, A.: p-Laplacian driven image processing. In: ICIP, vol. V, pp. 257–260 (2007)

    Google Scholar 

  3. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. In: Proceedings of IEEE Computer Society Workshop on Computer Vision, pp. 16–22 (1987)

    Google Scholar 

  4. Kuijper, A.: Geometrical PDEs based on second order derivatives of gauge coordinates in image processing. Image and Vision Computing 27(8), 1023–1034 (2009)

    Article  Google Scholar 

  5. Wielgus, M.: Perona-Malik equation and its numerical properties. Master’s thesis, Uniwersytet Warszawski (2010)

    Google Scholar 

  6. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer (2006)

    Google Scholar 

  7. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benhamouda, B.: Parameter adaptation for nonlinear diffusion in image processing. Master’s thesis, Kaiserslautern (1996)

    Google Scholar 

  9. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE TIP 7, 398–410 (1998)

    Google Scholar 

  10. Robert, L., Deriche, R.: Dense depth map reconstruction: A minimization and regularization approach which preserves discontinuities. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 439–451. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Wei, G.: Generalized Perona-Malik equation for image restoration. IEEE Signal Processing Letters 6, 165–167 (1997)

    Article  Google Scholar 

  12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  13. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE TIP 7(6), 813–824 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Guo, Z., Sun, J., Zhang, D., Wu, B.: Adaptive Perona and Malik Model Based on the Variable Exponent for Image Denoising. IEEE TIP 21(3), 958–967 (2012)

    MathSciNet  Google Scholar 

  15. Thuerck, D.: A weakened Perona Malik inspired model for effective denoising. Technical Report, TU Darmstadt (2013)

    Google Scholar 

  16. Kuijper, A., Schwarzkopf, A., Kalbe, T., Bajaj, C., Roth, S., Goesele, M.: 3D anisotropic diffusion on GPUs by closed-form local tensor computations. Numerical Mathematics: Theory, Methods and Applications 6(1), 72–94 (2013)

    MathSciNet  Google Scholar 

  17. Ndajah, P., Kikuchi, H., Yukawa, M., Watanabe, H., Muramatsu, S.: An investigation on the quality of denoised images. Circuits, Systems and Signal Processing 5, 423–434 (2011)

    Google Scholar 

  18. Wang, Z., Lu, L., Bovik, A.C.: Foveation scalable video coding with automatic fixation selection. IEEE TIP 12(2), 243–254 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thuerck, D., Kuijper, A. (2013). Cosine-Driven Non-linear Denoising. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics