Structure Approximation of Most Probable Explanations in Bayesian Networks

  • Johan Kwisthout
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7958)


Typically, when one discusses approximation algorithms for (NP-hard) problems (like Traveling Salesperson, Vertex Cover, Knapsack), one refers to algorithms that return a solution whose value is (at least ideally) close to optimal; e.g., a tour with almost minimal length, a vertex cover of size just above minimal, or a collection of objects that has close to maximal value. In contrast, one might also be interested in approximation algorithms that return solutions that resemble the optimal solutions, i.e., whose structure is akin to the optimal solution, like a tour that is almost similar to the optimal tour, a vertex cover that differs in only a few vertices from the optimal cover, or a collection that is similar to the optimal collection. In this paper, we discuss structure-approximation of the problem of finding the most probable explanation of observations in Bayesian networks, i.e., finding a joint value assignment that looks like the most probable one, rather than has an almost as high value. We show that it is NP-hard to obtain the value of just a single variable of the most probable explanation. However, when partial orders on the values of the variables are available, we can improve on these results.


Approximation Algorithm Polynomial Time Bayesian Network Vertex Cover Probable Explanation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelbar, A.M., Hedetniemi, S.M.: Approximating MAPs for belief networks is NP-hard and other theorems. Artificial Intelligence 102, 21–38 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baker, C.L., Saxe, R., Tenenbaum, J.B.: Action understanding as inverse planning. Cognition 113(3), 329–349 (2009)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L., van den Eijkhof, F., van der Gaag, L.C.: On the complexity of the MPA problem in probabilistic networks. In: van Harmelen, F. (ed.) Proceedings of the 15th European Conference on Artificial Intelligence, pp. 675–679 (2002)Google Scholar
  4. 4.
    Chater, N., Oaksford, M.: Ten years of the rational analysis of cognition. Trends in Cognitive Sciences 3, 57–65 (1999)CrossRefGoogle Scholar
  5. 5.
    Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42(2), 393–405 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Feige, U., Langberg, M., Nissim, K.: On the hardness of approximating NP witnesses. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 120–131. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Gemela, J.: Financial analysis using Bayesian networks. Applied Stochastic Models in Business and Industry 17, 57–67 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hamilton, M., Müller, M., van Rooij, I., Wareham, T.: Approximating solution structure. In: Demaine, E., Gutin, G.Z., Marx, D., Stege, U. (eds.) Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, Dagstuhl Seminar Proceedings, vol. 07281 (2007)Google Scholar
  10. 10.
    Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer, New York (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kumar, R., Sivakumar, D.: Proofs, codes, and polynomial-time reducibilities. In: Proceedings of the Fourteenth Annual Conference on Computational Complexity, pp. 46–53. IEEE Computer Society (1999)Google Scholar
  12. 12.
    Kwisthout, J.: Most probable explanations in Bayesian networks: Complexity and tractability. International Journal of Approximate Reasoning 52(9), 1452–1469 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kwisthout, J.: Structure approximation of most probable explanations in Bayesian networks. In: Uiterwijk, J.W.H.M., Roos, N., Winands, M.H.M. (eds.) Proceedings of the 24th Benelux Conference on Artificial Intelligence (BNAIC 2012), pp. 131–138 (2012)Google Scholar
  14. 14.
    Lacave, C., Díez, F.J.: A review of explanation methods for Bayesian networks. The Knowledge Engineering Review 17(2), 107–127 (2002)CrossRefGoogle Scholar
  15. 15.
    Lucas, P.J.F., de Bruijn, N., Schurink, K., Hoepelman, A.: A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU. Artificial Intelligence in Medicine 3, 251–279 (2000)CrossRefGoogle Scholar
  16. 16.
    Millgram, E.: Coherence: The price of the ticket. Journal of Philosophy 97, 82–93 (2000)CrossRefGoogle Scholar
  17. 17.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Palo Alto (1988)Google Scholar
  18. 18.
    Shimony, S.E.: Finding MAPs for belief networks is NP-hard. Artificial Intelligence 68(2), 399–410 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sticha, P.J., Buede, D.M., Rees, R.L.: Bayesian model of the effect of personality in predicting decisionmaker behavior. In: van der Gaag, L.C., Almond, R. (eds.) Proceedings of the Fourth Bayesian Modelling Applications Workshop (2006)Google Scholar
  20. 20.
    van der Gaag, L.C., Renooij, S., Geenen, P.L.: Lattices for studying monotonicity of Bayesian networks. In: Studený, M., Vomlel, J. (eds.) Proceedings of the Third European Workshop on Probabilistic Graphical Models, pp. 99–106 (2006)Google Scholar
  21. 21.
    van der Gaag, L.C., Renooij, S., Witteman, C.L.M., Aleman, B.M.P., Taal, B.G.: Probabilities for a probabilistic network: a case study in oesophageal cancer. Artificial Intelligence in Medicine 25, 123–148 (2002)CrossRefGoogle Scholar
  22. 22.
    van Rooij, I., Kwisthout, J., Blokpoel, M., Szymanik, J., Wareham, T., Toni, I.: Communicating intentions: Computationally easy or difficult? Frontiers in Human Neuroscience 5(52), 1–18 (2011)Google Scholar
  23. 23.
    van Rooij, I., Wareham, T.: Intractability and approximation of optimization theories of cognition. Journal of Mathematical Psychology 56(4), 232–247 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johan Kwisthout
    • 1
  1. 1.Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations