Population Protocols on Graphs: A Hierarchy

  • Olivier Bournez
  • Jonas Lefèvre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7956)

Abstract

Population protocols have been introduced as a model in which anonymous finite-state agents stably compute a predicate of the multiset of their inputs via interactions by pairs. In this paper, we consider population protocols acting on families of graphs, that is to say on particular topologies. Stably computable predicates on strings of size n correspond exactly to languages of NSPACE(n), that is to say to non-deterministic space of Turing machines. Stably computable predicates on cliques correspond to semi-linear predicates, namely exactly those definable in Presburger’s arithmetic. Furthermore, we exhibit a strict hierarchy in-between when considering graphs between strings and cliques.

Keywords

population protocols computability hierarchy space complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, pp. 290–299. ACM (2004)Google Scholar
  2. 2.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)CrossRefGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols, vol. 3, p. 13 (November 2008)Google Scholar
  6. 6.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the EATCS 93, 106–125 (2007)Google Scholar
  7. 7.
    Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. Theoretical Computer Science (2011)Google Scholar
  8. 8.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die: Making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Guerraoui, R., Ruppert, E.: Names trump malice: Tiny mobile agents can tolerate byzantine failures, pp. 484–495 (2009)Google Scholar
  10. 10.
    Saks, M.: Randomization and derandomization in space-bounded computation. In: Proceedings of the Eleventh Annual IEEE Conference on Computational Complexity, pp. 128–149. IEEE (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Jonas Lefèvre
    • 1
  1. 1.Ecole Polytechnique, LIXPalaiseau CedexFrance

Personalised recommendations