Skip to main content

Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7956))

Abstract

In this paper we demonstrate the power of a model of tile self-assembly based on active glues which can dynamically change state. We formulate the Signal-passing Tile Assembly Model (STAM), based on the model of Padilla, et al.[1] to be asynchronous, allowing any action of turning a glue on or off, attaching a new tile, or breaking apart an assembly to happen in any order. Within this highly generalized model we provide three new solutions to tile self-assembly problems that have been addressed within the abstract Tile Assembly Model and its variants, showing that signal passing tiles allow for substantial improvement across multiple complexity metrics. Our first result utilizes a recursive assembly process to achieve tile-type efficient assembly of linear structures, using provably fewer tile types than what is possible in standard tile assembly models. Our second system of signal-passing tiles simulates any Turing machine with high fuel efficiency by using only a constant number of tiles per computation step. Our third system assembles the discrete Sierpinski triangle, demonstrating that this pattern can be strictly self-assembled within the STAM. This result is of particular interest in that it is known that this pattern cannot self-assemble within a number of well studied tile self-assembly models. Notably, all of our constructions are at temperature 1, further demonstrating that signal-passing confers the power to bypass many restrictions found in standard tile assembly models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Padilla, J.E., Liu, W., Seeman, N.C.: Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced tile assembly model. Natural Computing 11, 323–338 (2012)

    Article  MathSciNet  Google Scholar 

  2. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology (June 1998)

    Google Scholar 

  3. Wang, H.: Proving theorems by pattern recognition II. AT&T Bell Labs Tech. J. 40, 1–41 (1961)

    Google Scholar 

  4. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, Oregon, United States, pp. 459–468. ACM (2000)

    Google Scholar 

  5. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), 2041–2053 (2004)

    Article  Google Scholar 

  6. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal on Computing 36(6), 1544–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kao, M.-Y., Schweller, R.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., Moisset de Espanés, P., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34, 1493–1515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Becker, F.: Pictures worth a thousand tiles, a geometrical programming language for self-assembly. Theoretical Computer Science 410(16), 1495–1515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors). Technical Report 1201.1650, Computing Research Repository (2012)

    Google Scholar 

  12. Chen, H.L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: SODA 2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1163–1182. SIAM (2012)

    Google Scholar 

  13. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: Compact, robust programmable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., Moisset de Espanés, P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 23–32 (2002)

    Google Scholar 

  15. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: Deterministic assembly in 3d and probabilistic assembly in 2d. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (2011)

    Google Scholar 

  16. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature 1. Theoretical Computer Science 412, 145–158 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 37–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Schweller, R., Sherman, M.: Fuel efficient computation in passive self-assembly. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana (to appear, 2013)

    Google Scholar 

  19. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  20. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  21. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline Two-Dimensional DNA-Origami arrays. Angewandte Chemie International Edition 50(1), 264–267 (2011)

    Article  Google Scholar 

  22. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  23. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)

    Article  Google Scholar 

  24. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry 3(2), 103–113 (2011)

    Article  Google Scholar 

  25. Qian, L., Winfree, E.: A simple dna gate motif for synthesizing large-scale circuits. Journal of The Royal Society Interface 8(62), 1281–1297 (2011)

    Article  Google Scholar 

  26. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America 101(43), 15275 (2004)

    Article  Google Scholar 

  27. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated legs. Science 324(5923), 67 (2009)

    Article  Google Scholar 

  28. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010)

    Article  Google Scholar 

  29. Wickham, S.F.J., Endo, M., Katsuda, Y., Hidaka, K., Bath, J., Sugiyama, H., Turberfield, A.J.: Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotechnology 6(3), 166–169 (2011)

    Article  Google Scholar 

  30. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585 (2006)

    Article  Google Scholar 

  31. Padilla, J.E., Patitz, M.J., Pena, R., Schweller, R.T., Seeman, N.C., Sheline, R., Summers, S.M., Zhong, X.: Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assembly of shapes. Technical Report 1202.5012, Computing Research Repository (2012)

    Google Scholar 

  32. Patitz, M.J., Summers, S.M.: Self-assembly of decidable sets. Natural Computing 10, 853–877 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor (extended abstract). In: Schwentick, T., Dürr, C. (eds.) 28th International Symposium on Theoretical Aspects of Computer Science, STACS 2011, Dortmund, Germany, March 10-12. LIPIcs, vol. 9, pp. 201–212. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  34. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410, 384–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Natural Computing 9, 135–172 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Doty, D.: Personal communication (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Padilla, J.E. et al. (2013). Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds) Unconventional Computation and Natural Computation. UCNC 2013. Lecture Notes in Computer Science, vol 7956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39074-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39074-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39073-9

  • Online ISBN: 978-3-642-39074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics