Advertisement

Small Steps toward Hypercomputation via Infinitary Machine Proof Verification and Proof Generation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7956)

Abstract

After setting a context based on two general points (that humans appear to reason in infinitary fashion, and two, that actual hypercomputers aren’t currently available to directly model and replicate such infinitary reasoning), we set a humble engineering goal of taking initial steps toward a computing machine that can reason in infinitary fashion. The initial steps consist in our outline of automated proof-verification and proof-discovery techniques for theorems independent of PA that seem to require an understanding and use of infinitary concepts (e.g., Goodstein’s Theorem). We specifically focus on proof-discovery techniques that make use of a marriage of analogical and deductive reasoning (which we call analogico-deductive reasoning).

Keywords

Target Domain Analogical Reasoning Predicate Symbol Natural Deduction Source Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkoudas, K., Bringsjord, S.: Metareasoning for Multi-agent Epistemic Logics. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 111–125. Springer, Heidelberg (2005), http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf CrossRefGoogle Scholar
  2. Baker, S., Ireland, A., Smaill, A.: On the Use of the Constructive Omega-Rule Within Automated Deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 214–225. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. Bringsjord, S., Arkoudas, K.: On the Provability, Veracity, and AI-Relevance of the Church-Turing Thesis. In: Olszewski, A., Wolenski, J., Janusz, R. (eds.) Church’s Thesis After 70 Years, pp. 66–118. Ontos Verlag, Frankfurt (2006), http://kryten.mm.rpi.edu/ct_bringsjord_arkoudas_final.pdf; This book is in the series Mathematical Logic, edited by W. Pohlers, T. Scanlon, E. Schimmerling, R. Schindler, H. Schwichtenberg
  4. Bringsjord, S., Govindarajulu, N.S.: In Defense of the Unprovability of the Church-Turing Thesis. Journal of Unconventional Computing 6, 353–373 (2011); Preprint available at http://kryten.mm.rpi.edu/SB_NSG_CTTnotprovable_091510.pdf Google Scholar
  5. Bringsjord, S., Licato, J.: Psychometric Artificial General Intelligence: The Piaget-MacGyver Room. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of Artificial General Intelligence. Atlantis Press (2012), http://kryten.mm.rpi.edu/Bringsjord_Licato_PAGI_071512.pdf
  6. Bringsjord, S., Taylor, J., Shilliday, A., Clark, M., Arkoudas, K.: Slate: An Argument-Centered Intelligent Assistant to Human Reasoners. In: Grasso, F., Green, N., Kibble, R., Reed, C. (eds.) Proceedings of the 8th International Workshop on Computational Models of Natural Argument, CMNA 2008, Patras, Greece, pp. 1–10 (2008), http://kryten.mm.rpi.edu/Bringsjord_etal_Slate_cmna_crc_061708.pdf
  7. Bringsjord, S., van Heuveln, B.: The Mental Eye Defense of an Infinitized Version of Yablo’s Paradox. Analysis 63(1), 61–70 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bringsjord, S., Zenzen, M.: Superminds: People Harness Hypercomputation, and More. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  9. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New York (1984)zbMATHGoogle Scholar
  10. Franzén, T.: Transfinite Progressions: A Second Look at Completeness. Bulletin of Symbolic Logic, 367–389 (2004)Google Scholar
  11. Kolmogorov, A., Uspenskii, V.: On the Definition of an Algorithm. Uspekhi Matematicheskikh Nauk 13(4), 3–28 (1958)MathSciNetzbMATHGoogle Scholar
  12. Licato, J., Bringsjord, S., Hummel, J.E.: Exploring the Role of Analogico-Deductive Reasoning in the Balance-Beam Task. In: Rethinking Cognitive Development: Proceedings of the 42nd Annual Meeting of the Jean Piaget Society, Toronto, Canada (2012), https://docs.google.com/open?id=0B1S661sacQp6NDJ0YzVXajJMWVU
  13. Licato, J., Govindarajulu, N.S., Bringsjord, S., Pomeranz, M., Gittelson, L.: Analogico-deductive Generation of Gödel’s First Incompleteness Theorem from the Liar Paradox. In: Proceedings of the 23rd Annual International Joint Conference on Artificial Intelligence, IJCAI 2013 (2013)Google Scholar
  14. Owen, S.: Analogy for Automated Reasoning. Academic Press (1990)Google Scholar
  15. Pelletier, J.: A Brief History of Natural Deduction. History and Philosophy of Logic 20, 1–31 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Polya, G.: Induction and Analogy in Mathematics. Princeton University Press, Princeton (1954); This is Volume I of Mathematics and Plausible Reasoning. Volume II is Patterns of Plausible InferenceGoogle Scholar
  17. Potter, M.: Set Theory and its Philosophy: A Critical Introduction. Oxford University Press, Oxford (2004)zbMATHCrossRefGoogle Scholar
  18. Robinson, J.: A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM (JACM) 12(1), 23–41 (1965)zbMATHCrossRefGoogle Scholar
  19. Shilliday, A.: Elisa: A New System for AI-assisted Logico-mathematical Scientific Discovery Incorporating Novel Techniques in Infinite Model Finding. PhD thesis, Rensselaer Polytechnic Institute (2009)Google Scholar
  20. Smith, P.: An Introduction to Gödel’s Theorems. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  21. Stickel, M.E.: SNARK: SRI’s New Automated Reasoning Kit SNARK (2008), http://www.ai.sri.com/~stickel/snark.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Cognitive ScienceRensselaer Polytechnic InstituteTroyUSA
  3. 3.Rensselaer AI & Reasoning LaboratoryRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations