Skip to main content

Generation and Analysis of 3D Virtual Neurons Using Genetic Regulatory Network Model

  • Conference paper
  • 3596 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7951)

Abstract

Neuronal morphology is significant for understanding structure-function relationships and brain information processing in computational neuroscience. So it is very important to simulate neuronal morphology completely and accurately. In this paper, we present a novel approach for efficient generation of 3D virtual neurons using genetic regulatory network model. This approach describes dendritic geometry and topology by locally inter-correlating morphological variables which can be represented by the dynamics of gene expression. The experimental results show that the generating virtual neurons that are anatomically indistinguishable and accurate from experimentally traced real neurons.

Keywords

  • virtual neuron
  • neuronal morphology
  • genetic regulatory network

This research is supported by the National Natural Science Foundation of China under Grant No. 61165002, and the Natural Science Foundation of Gansu Province of China under Grant No. 1010RJZA019.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39065-4_2
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39065-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   131.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shepherd, G.M., Mirsky, J.S., Healy, M.D., Singer, M.S., Skoufos, E., Hines, M.S., Nadkarni, P.M., Miller, P.L.: The Human Brain Project: Neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends in Neuroscience 21(11), 460–468 (1998)

    CrossRef  Google Scholar 

  2. Markram, H.: The Blue Brain Project. Nature Reviews Neuroscience 7(2), 153–160 (2006)

    MathSciNet  CrossRef  Google Scholar 

  3. Buckmaster, P.S., Alonso, A., Canfield, D.R., Amaral, D.G.: Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. Journal of Comparative Neurology 470(3), 317–329 (2004)

    CrossRef  Google Scholar 

  4. Koch, C., Segev, I.: The role of single neurons in information processing. Nature Neuroscience 3(1), 1171–1177 (2000)

    CrossRef  Google Scholar 

  5. Hillman, D.: Neuronal shape parameters and substructures as a basis of neuronal form. In: Schmitt, F.O., Worden, F.G. (eds.) The Neurosciences, 4th Study Program, pp. 477–498. MIT Press, Cambridge (1979)

    Google Scholar 

  6. Burke, R., Marks, W., Ulfhake, B.: A parsimonious description of motorneuron dendritc morphology using computer simulation. Journal of Neuroscience 12(6), 2403–2416 (1992)

    Google Scholar 

  7. Ascoli, G.A., Krichmar, J.L.: L-Neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 32(33), 1003–1011 (2000)

    CrossRef  Google Scholar 

  8. López-Cruz, P.L., Bielza, C., Larrañaga, P., Benavides-Piccione, R., DeFelipe, J.: Models and simulation of 3D neuronal dendritic trees using bayesian networks. Neuroinformatics 9(4), 347–369 (2011)

    CrossRef  Google Scholar 

  9. Berry, M., Bradley, P.M.: The application of network analysis to the study of branching patterns of large dendritic fields. Brain Research 109(1), 111–132 (1976)

    CrossRef  Google Scholar 

  10. Van Pelt, J., Van Ooyen, A., Uylings, H.B.M.: Modeling dendritic geometry and the development of nerve connections. In: DeSchutter, E., Cannon, R.C. (eds.) Computational Neuroscience: Realistic Modeling for Experimentalist, pp. 179–208. CRC Press, Boca Raton (2001)

    Google Scholar 

  11. Cannon, R., Turner, D., Pyapali, G., Wheal, H.: An online archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods 84(1), 49–54 (1998)

    CrossRef  Google Scholar 

  12. Ascoli, G.A., Donohue, D.E., Halavi, M.: NeuroMorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience 27(35), 9247–9251 (2007)

    CrossRef  Google Scholar 

  13. NeuroMorpho.Org, http://neuromorpho.org/neuroMorpho/index.jsp

  14. Hippocampal Neuronal Morphology, http://neuron.duke.edu/cells/cellArchive.html

  15. Myatt, D.R., Hadlington, T., Ascoli, G.A., Nasuto, S.J.: Neuromantic–from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in Neuroinformatics 6(4), 1–14 (2012)

    Google Scholar 

  16. Ascoli, G.A., Krichmar, J.L., Scorcioni, R., Nasuo, S.J., Senft, S.L.: Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology 204(4), 283–301 (2001)

    CrossRef  Google Scholar 

  17. Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology 1(5), 491–527 (1959)

    CrossRef  Google Scholar 

  18. Ascoli, G.A.: Progress and perspectives in computational neuroanatomy. Anatomical Record 257(6), 195–207 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, X., Li, Z. (2013). Generation and Analysis of 3D Virtual Neurons Using Genetic Regulatory Network Model. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39065-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39064-7

  • Online ISBN: 978-3-642-39065-4

  • eBook Packages: Computer ScienceComputer Science (R0)