Skip to main content

Bifurcation of a Discrete-Time Cohen-Grossberg-Type BAM Neural Network with Delays

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7951)

Abstract

A tri-neuron discrete-time Cohen-Grossberg BAM neural network with delays is investigated in this paper. By analyzing the corresponding characteristic equations, the asymptotical stability of the null solution and the existence of Neimark-Sacker bifurcations are discussed. By applying the normal form theory and the center manifold theorem, the direction of the Neimark-Sacker bifurcation and the stability of bifurcating periodic solutions are obtained. Numerical simulations are given to illustrate the obtained results.

Keywords

  • Cohen-Grossberg neural network
  • discrete time
  • delay
  • stability
  • Neimark-Sacker bifurcation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39065-4_14
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39065-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   131.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA. 79, 2554–2558 (1982)

    MathSciNet  CrossRef  Google Scholar 

  2. Cohen, M., Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybernet. Smc-13, 815–826 (1982)

    MathSciNet  Google Scholar 

  3. Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130, 255–272 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Cao, J., Xiao, M.: Stability and Hopf bifurcation in a simplified BAM neural network with two time delays. IEEE Trans Neural Networks 18, 416–430 (2007)

    CrossRef  Google Scholar 

  5. Guo, S., Huang, L., Wang, L.: Lineartability and Hopf bifurcation in a two-neuron network with three delays. Int. J. Bifurcat. Chaos 14, 2799–2810 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Huang, C., Huang, L., Feng, J., Nai, M., He, Y.: Hopf bifurcation analysis for a two-neuron network with four delays. Chaos, Solitons and Fractals 34, 795–812 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Zhou, X., Wu, Y., Li, Y., Yao, X.: Stability and bifurcation analysis on a two-neuron networks with discrete and distributed delays. Chaos, Solitons and Fractals 40, 1493–1505 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Yang, Y., Ye, J.: Stability and bifurcation in a simplified five-neuron BAM neural networks with delays. Chaos, Solitons Fract 42, 2357–2363 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. Zhao, H., Wang, L.: Hopf bifurcation in Cohen-Grossberg neural network with distributed delays. Nonlinear Anal.: Real World Appl. 8, 73–89 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Liu, Q., Xu, R.: Stability and bifurcation of a Cohen-Grossberg neural network with discrete delays. Applied Mathematics and Computation 218, 2850–2862 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Gan, Q., Xu, R., Hu, W., Yang, P.: Bifurcation analysis for a tri-neuron discrete-time BAM neural network with delays. Chaos, Solitons and Fractals 42, 2502–2511 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  12. Kaslik, E., Balint, S.: Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections. Chaos, Solitons and Fractals 39, 83–91 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Kaslik, E., Balint, S.: Complex and chaotic dynamics in a discrete-time-delayed Hopfield neural network with ring architecture. Neural Networks 22, 1411–1418 (2009)

    CrossRef  Google Scholar 

  14. Zhao, H., Wang, L.: Stability and bifurcation for discrete-time Cohen-Grossberg neural networks. Appl. Math. Comput. 179, 787–798 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Liu, Q., Xu, R., Wang, Z.: Stability and bifurcation of a class of discrete-time Cohen-Grossberg neural networks with delays. Discrete Dynamics in Nature and Society 2011, Article ID 403873 (2011)

    Google Scholar 

  16. Kuznetsov, A.: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Q. (2013). Bifurcation of a Discrete-Time Cohen-Grossberg-Type BAM Neural Network with Delays. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39065-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39064-7

  • Online ISBN: 978-3-642-39065-4

  • eBook Packages: Computer ScienceComputer Science (R0)