Skip to main content

An Approach for Designing Neural Cryptography

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7951)

Abstract

Neural cryptography is widely considered as a novel method of exchanging secret key between two neural networks through mutual learning. This paper puts forward a generalized architecture to provide an approach to designing novel neural cryptography. Meanwhile, by taking an in-depth investigation on the security of neural cryptography, a heuristic rule is proposed. These results can effectively guide us to designing secure neural cryptography. Finally, an example is given to demonstrate the effectiveness of the proposed structure and the heuristic rule.

Keywords

  • Neural synchronization
  • Neural cryptography
  • Generalized architecture
  • Heuristic rule

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39065-4_13
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39065-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   131.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform. Theory 22(6), 644–654 (1976)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryptography. In: Applied Cryptography, CRC Press, Boca Raton (1996)

    CrossRef  Google Scholar 

  3. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  4. Stallings, W.: Cryptography and Network Security: Principles and Practice. Pearson, Upper Saddle River (2002)

    Google Scholar 

  5. Kanter, I., Kanter, W., Kanter, E.: Secure exchange of information by synchronization of neural networks. Europhys. Lett. 57(1), 141–147 (2002)

    CrossRef  Google Scholar 

  6. Maurer, U.: Secert key agreement by public discussion from common information. IEEE Trans. Inform. Theory 39(3), 733–742 (1993)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Volkmer, M., Wallner, S.: Tree parity machine rekeying architectures. IEEE Trans. Comput. 54(4), 421–427 (2005)

    CrossRef  Google Scholar 

  8. Volkmer, M., Wallner, S.: Tree parity machine rekeying architectures for embedded security. “Cryptology ePrint Archive,” Inst. Comput. Technol., Hamburg Univ. Technol., Hamburg, Germany, Rep. 2005/235 (2005)

    Google Scholar 

  9. Gross, N., Klein, E., Rosenbluh, M., Kinzel, W., Khaykovich, L., Kanter, I.: A framework for public-channel cryptography using chaotic lasers. Phys. Rev. E 73(6), 066 214-1–066 214-4 (2005)

    Google Scholar 

  10. Klein, E., Kanter, R.M.I., Kinzel, W.: Public-channel cryptography using chaos synchronization. Phys. Rev. E 72(1), 016 214-1–016 214-4 (2005)

    Google Scholar 

  11. Klein, E., Gross, N., Rosenbluh, M., Kinzel, W., Khaykovich, L., Kanter, I.: Stable isochronal synchronization of mutually coupled chaotic lasers. Phys. Rev. E 73(6), 066 214-1–066 214-4 (2006)

    Google Scholar 

  12. Shacham, L.N., Klein, E., Mislovaty, R., Kanter, I., Kinzel, W.: Cooperating attackers in neural cryptography. Phys. Rev. E 69(6), 066 137-1–066 137-4 (2004)

    Google Scholar 

  13. Saad, D.: On-line learning in neural networks. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  14. Reyes, O.M., Kopitzke, I., Zimmermann, K.-H.: Permutation parity machines for neural synchronization. Phys. A: Math. Gen. 42, 195002 (2009)

    MathSciNet  CrossRef  Google Scholar 

  15. Reyes, O.M., Zimmermann, K.-H.: Permutation parity machines for neural cryptography. J. Phys. A: Math. Theor. 42, 195 002-1–195 002-20 (2009)

    Google Scholar 

  16. Rosen-Zvi, M., Klein, E., Kanter, I., Kinzel, W.: Mutual learning in a tree parity machine and its application to cryptography. Phys. Rev. E 66(6), 066 135-1–066 135-13 (2002)

    Google Scholar 

  17. Seoane, L.F., Ruttor, A.: Successful attack on permutation-parity-machine-based neural cryptography. Phys. Rev. E 85(2), 025 101-1–025 101-4 (2012)

    Google Scholar 

  18. Metzler, R., Kinzel, W., Kanter, I.: Interacting neural networks. Phys. Rev. E 62(3), 2555–2565 (2000)

    CrossRef  Google Scholar 

  19. Kinzel, W., Metzler, R., Kanter, I.: Dynamics of interacting neural networks. J. Phys. A: Math. Gen. 33(14), L141–L147 (2000)

    Google Scholar 

  20. Kinzel, W., Kanter, I.: Disorder generated by interacting neural networks: application to econophysics and cryptography. J. Phys. A: Math. Gen. 36(43), 11 173–11 186 (2003)

    Google Scholar 

  21. Kinzel, W., Kanter, I.: Interacting neural networks and cryptography. Advances in Solid State Physics (2002)

    Google Scholar 

  22. Bornholdt, S., Schuster, H.: Theory of Interacting Neural Networks. Wiley VCH (2003)

    Google Scholar 

  23. Ruttor, A., Kinzel, W., Naeh, R., Kanter, I.: Genetic attack on neural cryptography. Phys. Rev. E 73(3), 036 121-1–036 121-8 (2006)

    Google Scholar 

  24. Ruttor, A., Kinzel, W., Kanter, I.: Dynamics of neural cryptographys. Phys. Rev. E 75(5), 056 104-1–056 104-4 (2007)

    Google Scholar 

  25. Ruttor, A., Reents, G., Kinzel, W.: Sychronizition of random walks with reflecting boundaries. J. Phys. A: Math. Gen. 37, 8609–8618 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  26. Ruttor, A., Kinzel, W., Shacham, L., Kanter, I.: Neural cryptography with feedback. Phys. Rev. E 69(4), 046 110-1–046 110-7 (2004)

    Google Scholar 

  27. Ruttor, A., Kinzel, W., Kanter, I.: Neural cryptography with queries. J. Stat. Mech. 2005(1), 1–14 (2005)

    CrossRef  Google Scholar 

  28. Allam, A.M., Abbas, H.M.: On the improvement of neural cryptography using erroneous transmitted information with error prediction. IEEE Trans. Neural Networks 21(12), 1915–1924

    Google Scholar 

  29. Klimov, A., Mityaguine, A., Shamir, A.: Analysis of neural cryptography. In: Proc. 8th Int. Conf. Theory Appl. Cryptology Inform. Secur., pp. 288–298 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mu, N., Liao, X. (2013). An Approach for Designing Neural Cryptography. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39065-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39064-7

  • Online ISBN: 978-3-642-39065-4

  • eBook Packages: Computer ScienceComputer Science (R0)